在进行锁处理的时候还有一个接口:Condition,这个接口可以由用户来自己进行锁的对象创建。

  Condition的作用是对锁进行更精确的控制。

  Conditionawait()方法相当于Objectwait()方法,Conditionsignal()方法相当于Objectnotify()方法,ConditionsignalAll()方法相当于ObjectnotifyAll()方法。

  不同的是Objectwait(), notify(), notifyAll() 方法是和“同步锁”(synchronized关键字)捆绑使用的;而Condition是需要与“互斥锁/共享锁”捆绑使用。

  Object Condition
休眠 wait() await()
唤醒单个线程 notify() signal()
唤醒多个线程 notifyAll() signalAll()

范例:观察Condition的基本使用

package so.strong.mall.concurrent;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; public class ConditionDemo {
private static String msg = null; //设置一个字符串
public static void main(String[] args) throws Exception{
final Lock myLock = new ReentrantLock(); //实例化Lock接口对象
final Condition condition = myLock.newCondition(); //创建一个新的Condition接口对象
myLock.lock();
//如果现在不进行锁定,那么Condition无法执行等代理处理机制,会出现IllegalMonitorStateException
try {
new Thread(new Runnable() {
@Override
public void run() {
myLock.lock();
try {
msg = "itermis.com";
condition.signal(); //唤醒等待的Condition
} finally {
myLock.unlock();
}
}
}).start();
condition.await(); //线程等待
System.out.println("*******主线程执行完毕,msg="+msg);
} finally {
myLock.unlock(); //解除阻塞状态
}
}
}
//*******主线程执行完毕,msg=itermis.com

  与之前的Object相比,唯一的区别在于:现在看不见明确的synchronized关键字,而取代synchronizedLock接口中的lock(),unlock()两个方法,而后在阻塞状态(同步状态)下可以使用Condition中的await()signal()方法进行等待与唤醒的操作处理。

范例:实现数据的缓冲控制

package so.strong.mall.concurrent;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock; /**
* @author Termis
* @date 2018/5/3
*/
public class DataBufferDemo {
public static void main(String[] args) {
final DataBuffer db = new DataBuffer();
for (int i = 0; i < 3; i++) { //创建3个写线程
new Thread(new Runnable() {
@Override
public void run() {
for (int j = 0; j < 2; j++) {
try {
TimeUnit.SECONDS.sleep(1);
} catch (Exception e) {
e.printStackTrace();
}
db.put(Thread.currentThread().getName() + "写入数据,j=" + j);
}
}
}, "生产者-" + i).start();
} for (int i = 0; i < 5; i++) { //创建5个读线程
new Thread(new Runnable() {
@Override
public void run() {
while (true) {
try {
TimeUnit.SECONDS.sleep(3);
} catch (Exception e) {
e.printStackTrace();
}
System.out.println("[(" + Thread.currentThread().getName() + ")CONSUMER]" + db.get());
}
}
}, "消费者-" + i).start();
}
}
} class DataBuffer { //进行数据的缓冲操作控制
private static final int MAX_LENGTH = 5; // 该类之中保存的数组长度的个数为5
private Object[] data = new Object[MAX_LENGTH]; //定义一个数组进行全部数据的保存控制
private Lock myLock = new ReentrantLock(); //创建数据锁
private Condition putCondition = myLock.newCondition(); //数据保存的Condition控制
private Condition getCondition = myLock.newCondition(); //数据读取的Condition控制
private int putIndex = 0; //写入数据的索引
private int getIndex = 0; //读取数据的索引
private int count = 0; //当前保存的元素个数 public Object get() {
Object getObj = null;
this.myLock.lock();
try {
if (this.count == 0) //没有写入
this.getCondition.await(); //读取的线程要进行等待
getObj = this.data[this.getIndex++]; //读取指定索引数据
if (this.getIndex == MAX_LENGTH)
this.getIndex = 0; //重新开始读
this.count--; //因为读了一个数据之后,现在需要减少个数
this.putCondition.signal(); //告诉写线程可以写入
} catch (Exception e) {
e.printStackTrace();
} finally {
this.myLock.unlock();
}
return getObj;
} public void put(Object obj) { //进行缓冲数据的写入操作
this.myLock.lock(); //进入独占锁状态
try {
if (this.count == MAX_LENGTH) //保存的数据已经满了
this.putCondition.await(); //暂时先别进行数据保存了
this.data[this.putIndex++] = obj; //保存当前数据
if (this.putIndex == MAX_LENGTH) //现在索引已经写满
this.putIndex = 0; //重置数组操作的索引脚标
this.count++; //保存的个数需要做一个追加
this.getCondition.signal(); //唤醒消费线程
System.out.println("[(" + Thread.currentThread().getName() + ")写入缓冲-put()]" + obj);
} catch (Exception e) {
e.printStackTrace();
} finally {
this.myLock.unlock(); //不管如何最终一定要进行解锁
}
}
}
[(生产者-2)写入缓冲-put()]生产者-2写入数据,j=0
[(生产者-1)写入缓冲-put()]生产者-1写入数据,j=0
[(生产者-0)写入缓冲-put()]生产者-0写入数据,j=0
[(生产者-1)写入缓冲-put()]生产者-1写入数据,j=1
[(生产者-2)写入缓冲-put()]生产者-2写入数据,j=1
[(消费者-3)CONSUMER]生产者-2写入数据,j=0
[(消费者-4)CONSUMER]生产者-1写入数据,j=1
[(消费者-1)CONSUMER]生产者-0写入数据,j=0
[(消费者-2)CONSUMER]生产者-1写入数据,j=0
[(生产者-0)写入缓冲-put()]生产者-0写入数据,j=1
[(消费者-0)CONSUMER]生产者-2写入数据,j=1
[(消费者-3)CONSUMER]生产者-0写入数据,j=1

  对于生产者和消费者模型的实现,除了多线程基础实现之外,也可以采用以上的模式利用LockCondition进行精确控制。

JUC——线程同步锁(Condition精准控制)的更多相关文章

  1. JUC——线程同步锁(锁处理机制简介)

    锁处理机制简介 juc的开发框架解决的核心问题是并发访问和数据安全操作问题,当进行并发访问的时候如果对于锁的控制不当,就会造成死锁这样的阻塞问题. 为了解决这样的缺陷,juc里面重新针对于锁的概念进行 ...

  2. JUC——线程同步锁(ReentrantReadWriteLock读写锁)

    读写锁简介 所谓的读写锁值得是两把锁,在进行数据写入的时候有一个把“写锁”,而在进行数据读取的时候有一把“读锁”. 写锁会实现线程安全同步处理操作,而读锁可以被多个对象读取获取. 读写锁:ReadWr ...

  3. JUC——线程同步锁(LockSupport阻塞原语)

    java.util.concurrent.locks.LockSupport这个是一个独立的类,这个类的主要功能是用来解决Thread里面提供的suspend()(挂起线程).resume()(恢复运 ...

  4. JUC——线程同步锁(ReentrantLock)

    ReentrantLock简介 ReentrantLock是一个可重复的互斥锁,又被称为独占锁,可重入的意思是:ReentrantLock锁可以被单个线程多次获取.但是在同一个时间点只能被一个线程锁持 ...

  5. Python之路(第四十四篇)线程同步锁、死锁、递归锁、信号量

    在使用多线程的应用下,如何保证线程安全,以及线程之间的同步,或者访问共享变量等问题是十分棘手的问题,也是使用多线程下面临的问题,如果处理不好,会带来较严重的后果,使用python多线程中提供Lock ...

  6. 多线程 - 线程同步锁(lock、Monitor)

    1. 前言 多线程编程的时候,我们不光希望两个线程间能够实现逻辑上的先后顺序运行,还希望两个不相关的线程在访问同一个资源的时候,同时只能有一个线程对资源进行操作,否则就会出现无法预知的结果. 比如,有 ...

  7. Python并发编程-进程 线程 同步锁 线程死锁和递归锁

    进程是最小的资源单位,线程是最小的执行单位 一.进程 进程:就是一个程序在一个数据集上的一次动态执行过程. 进程由三部分组成: 1.程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成 2.数据 ...

  8. Python3 进程 线程 同步锁 线程死锁和递归锁

    进程是最小的资源单位,线程是最小的执行单位 一.进程 进程:就是一个程序在一个数据集上的一次动态执行过程. 进程由三部分组成: 1.程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成 2.数据 ...

  9. Java线程同步锁

    把synchronized当作函数修饰符时,示例代码如下: Public synchronized void method(){ //-. } 这也就是同步方法,那这时synchronized锁定的是 ...

随机推荐

  1. django中session的存储位置

    django-session 存放位置 设置session的保存位置,有三种方法: 保存在关系数据库(db) 保存在缓存数据库(cache) 或者 关系+缓存数据库(cache_db) 保存在文件系统 ...

  2. ORACLE默认实例设置--linux

    数据库实例多了之后,每次export的时候,显示的ORACLE_SID总不是自己经常用的那个,要是能让默认的自定义就好了. 现在就解释一下在linux环境中如何定义: 1.su - oracle 2. ...

  3. Django 自定义模板标签和过滤器

    1.创建一个模板库 使用模板过滤器的时候,直接把过滤器写在app里,例如:在app里新建一个templatetags的文件夹,这个目录应当和 models.py . views.py 等处于同一层次. ...

  4. 「GXOI / GZOI2019」旧词

    题目 确定这不是思博题 看起来很神仙,本来以为是\([LNOI2014]LCA\)的加强版,结果发现一个点的贡献是\(s_i\times (deep_i^k-(deep_i-1)^k)\),\(s_i ...

  5. 【bzoj 3252】攻略

    题意 我们想到一个贪心,就是每次找到根路径前缀和最大的一个点,取走这条路径,同时把这条路径上的点权变成\(0\) 正确性显然 进一步发现我们需要从树上选择\(m\)条链使得链的总和最大 于是我们考虑换 ...

  6. etherlime-3-Etherlime Library API-Deployed Contract Wrapper

    Deployed Contract Wrapper部署合约的封装 Wrappers封装 One of the advancements of the etherlime is the result o ...

  7. smtp发送html报告与日志附件图片png

    1.非ssl发送: 授权码机制,开启smtp,获取授权码以qq邮箱为例: 附件展示: #!/usr/bin/python3 import os import smtplib from email.mi ...

  8. MySQL(二)索引背后的数据结构及算法原理

    本文转载自CodingLabs,原文链接 MySQL索引背后的数据结构及算法原理 目录 摘要 一.数据结构及算法基础 1. 索引的本质 2. B-Tree和B+Tree 3. 为什么使用B-Tree( ...

  9. STM32中用 stop 模式 配合低功耗模式下的自动唤醒(AWU) 能否实现FreeRTOS tickless 模式

    已经实现  ,2018年11月17日11:56:42,具体 如下: 第一步 : 修改 void vPortSetupTimerInterrupt( void ) 函数 ,修改原来的 systick 定 ...

  10. Notes 20180508 : Java基本程序设计结构之关键字与标识符

    我们成功书写了HelloWorld后,又深入了解了main函数,提到过main并非是关键字,可什么又是关键字呢?这其实就是这章要研究的内容,本节研究关键字与标识符,在标识符中我们也会讲解一下Java中 ...