BZOJ3329 Xorequ(数位dp+矩阵快速幂)
显然当x中没有相邻的1时该式成立,看起来这也是必要的。
于是对于第一问,数位dp即可。第二问写出dp式子后发现就是斐波拉契数列,矩阵快速幂即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000007
#define ll long long
int T,num[];
ll n,dp[][][];
struct matrix
{
int n,a[][];
matrix operator *(const matrix&b) const
{
matrix c;c.n=n;memset(c.a,,sizeof(c.a));
for (register int i=;i<n;i++)
for (register int j=;j<;j++)
for (register int k=;k<;k++)
c.a[i][j]=(c.a[i][j]+1ll*a[i][k]*b.a[k][j]%P)%P;
return c;
}
}f,a;
ll solve1(ll n)
{
memset(dp,,sizeof(dp));
int m=-;
while (n) num[++m]=n&,n>>=;
dp[m+][][]=;
for (int i=m;~i;i--)
if (num[i])
{
dp[i][][]=dp[i+][][]+dp[i+][][]+dp[i+][][]+dp[i+][][];
dp[i][][]=dp[i+][][];
dp[i][][]=dp[i+][][];
}
else
{
dp[i][][]=dp[i+][][]+dp[i+][][];
dp[i][][]=dp[i+][][]+dp[i+][][];
dp[i][][]=dp[i+][][];
}
return dp[][][]+dp[][][]+dp[][][]+dp[][][];
}
int solve2(ll n)
{
a.n=;a.a[][]=;a.a[][]=a.a[][]=a.a[][]=;
f.n=;f.a[][]=,f.a[][]=;
for (;n;n>>=,a=a*a) if (n&) f=f*a;
return f.a[][];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3329.in","r",stdin);
freopen("bzoj3329.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
scanf(LL,&n);
printf(LL,solve1(n)-);
printf("%d\n",solve2(n+));
}
return ;
}
BZOJ3329 Xorequ(数位dp+矩阵快速幂)的更多相关文章
- BZOJ 3329 Xorequ:数位dp + 矩阵快速幂
传送门 题意 现有如下方程:$ x \oplus 3x = 2x $ 其中 $ \oplus $ 表示按位异或. 共 $ T $ 组数据,每组数据给定正整数 $ n $,任务如下: 求出小于等于 $ ...
- hdu5564--Clarke and digits(数位dp+矩阵快速幂)
Clarke and digits 问题描述 克拉克是一名人格分裂患者.某一天,克拉克变成了一个研究人员,在研究数字. 他想知道在所有长度在[l,r]之间的能被7整除且相邻数位之和不为k的正整数有多少 ...
- HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...
- BZOJ3329: Xorequ(二进制数位dp 矩阵快速幂)
题意 题目链接 Sol 挺套路的一道题 首先把式子移一下项 \(x \oplus 2x = 3x\) 有一件显然的事情:\(a \oplus b \leqslant c\) 又因为\(a \oplus ...
- 2018.09.27 hdu5564Clarke and digits(数位dp+矩阵快速幂)
传送门 好题啊. 我只会写l,rl,rl,r都很小的情况(然而题上并没有这种数据范围). 但这个dp转移式子可以借鉴. 我们用f[i][j][k]f[i][j][k]f[i][j][k]表示当前在第i ...
- bnuoj 34985 Elegant String DP+矩阵快速幂
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...
- HDU 5434 Peace small elephant 状压dp+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: ...
- 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...
- 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...
随机推荐
- django 部署一个简单的博客系统
转:https://www.cnblogs.com/fnng/p/3737964.html 写的目的, 加深影响,熟悉开发流程, 开发都是练出来的. 环境 python3.5 windows 7 1. ...
- iptables 生产环境下基础设置
iptables 生产环境下基础设置 生成环境需求:防火墙需要让内网的Ip全部通过,外网IP添加到白名单,其他一切拒绝.安装在linux系统中安装yum install iptables-servic ...
- UART、SPI、I2C协议异同点
I2C.SPI.UART都是常见的低速板级通信协议,目前主流的SoC都内置了这些通讯协议的控制器,同样,各种传感器.Touch控制器.指纹模块.蓝牙模块.WIFI模块也都兼容这三种通信方式的一种或几种 ...
- 我的第一个bootstrap实例
先上代码: <!doctype html><html lang="en"><head> <meta charset="UTF-8 ...
- Flink架构分析之HA
抽象 LeaderElectionService 这个接口用于从一组竞选者中选出一个leader,其start方法需要传递一个LeaderContender竞选者作为参数,如果有多个竞选者,则每一个竞 ...
- thymeleaf 使用javascript定义数组报错
js中免不了的要用的数组,一维的二维的三维的 但是当用到thymeleaf作为模版时候会有一些坑,导致数组不能用 org.thymeleaf.exceptions.TemplateProcessing ...
- Datasets
STL-10 https://cs.stanford.edu/~acoates/stl10/ CIFAR-10 and CIFAR-100 https://www.cs.toronto.edu/~kr ...
- 程序设计 之 C#实现《拼图游戏》 (上)代码篇
原理详解请参考博客中 拼图游戏(下)原理篇 http://www.cnblogs.com/labixiaohei/p/6713761.html 功能描述: 1.用户自定义上传图片 2.游戏难度选择:简 ...
- lastlog命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/qiyebao/p/4331078.html last 显示所有用户最后登录信息(会显示系统用户) last -u 50 ...
- 使用python实现用微信远程控制电脑
首先,我们要先看看微信远程控制电脑的原理是什么呢? 我们可以利用Python的标准库控制本机电脑,然后要实现远程的话,我们可以把电子邮件作为远程控制的渠道,我们用Python自动登录邮箱检测邮件,当我 ...