1007: [HNOI2008]水平可见直线

Time Limit: 1 Sec  Memory Limit: 162 MB

题目连接

http://www.lydsy.com/JudgeOnline/problem.php?id=1007

Description

 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.
    例如,对于直线:
    L1:y=x; L2:y=-x; L3:y=0
    则L1和L2是可见的,L3是被覆盖的.
    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.

Input

第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi

Output

从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格

Sample Input

3
-1 0
1 0
0 0

Sample Output

1 2

HINT

题解:

首先我们按照斜率从大到小排序,然后我们对一个堆进行优化

如果要插入一条直线的话,K最大的那条线和K最小的肯定不会背盖住,只会有中间的那条直线被压住

所以我们就判定一下,然后不停的更新就好了

具体判定是看 斜率小的直线与斜率中间的直线,斜率小的直线和斜率大的直线,这两个x的坐标大小进行比较,然后就可以啦~

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 50001
#define mod 10007
#define eps 1e-9
//const int inf=0x7fffffff; //无限大
const int inf=0x3f3f3f3f;
/* */
//**************************************************************************************
struct node
{
double x,y;
int id;
};
bool cmp(node c,node d)
{
return c.x>d.x;
}
double kiss(node a,node b)
{
return (b.y-a.y+0.0)/(a.x-b.x+0.0);
}
node a[maxn],aa[maxn];
int s[maxn];
inline ll read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
bool cmp2(int c,int d)
{
return a[c].id<a[d].id;
}
int main()
{
int n;
cin>>n;
for(int i=;i<=n;i++)
{
cin>>aa[i].x>>aa[i].y;
aa[i].id=i;
}
sort(aa+,aa+n+,cmp);
int M=;
for(int i=;i<=n;i++)
{
if(aa[i].x!=a[i-].x)
a[++M]=aa[i];
else if(aa[i].y>a[M].y)
a[M].y=aa[i].y,a[M].id=aa[i].id;
}
int top=;
s[]=;top=;
for(int i=;i<=M;i++)
{
while(top>=)
{
double x1=kiss(a[s[top-]],a[i]);
double x2=kiss(a[s[top]],a[i]);
if(x1<=x2+1e-)
top--;
else
break;
}
s[++top]=i;
}
sort(s+,s+top+,cmp2);
for(int i=;i<=top;i++)
cout<<a[s[i]].id<<" ";
return ;
}

BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何的更多相关文章

  1. BZOJ 1007 [HNOI2008]水平可见直线 (栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7940  Solved: 3030[Submit][Sta ...

  2. bzoj 1007 [HNOI2008]水平可见直线(单调栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5120  Solved: 1899[Submit][Sta ...

  3. 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...

  4. BZOJ 1007 [HNOI2008]水平可见直线

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4453  Solved: 1636[Submit][Sta ...

  5. BZOJ 1007: [HNOI2008]水平可见直线 平面直线

    1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...

  6. bzoj 1007 : [HNOI2008]水平可见直线 计算几何

    题目链接 给出n条直线, 问从y轴上方向下看, 能看到哪些直线, 输出这些直线的编号. 首先我们按斜率排序, 然后依次加入一个栈里面, 如果刚加入的直线, 和之前的那条直线斜率相等, 那么显然之前的会 ...

  7. BZOJ.1007.[HNOI2008]水平可见直线(凸壳 单调栈)

    题目链接 可以看出我们是要维护一个下凸壳. 先对斜率从小到大排序.斜率最大.最小的直线是一定会保留的,因为这是凸壳最边上的两段. 维护一个单调栈,栈中为当前可见直线(按照斜率排序). 当加入一条直线l ...

  8. BZOJ 1007 [HNOI2008]水平可见直线 ——计算几何

    用了trinkle的方法,半平面交转凸包. 写了一发,既没有精度误差,也很好写. #include <map> #include <ctime> #include <cm ...

  9. bzoj 1007: [HNOI2008]水平可见直线 半平面交

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=1007; 题解 其实就是求每条直线的上半部分的交 所以做裸半平面交即可 #include ...

随机推荐

  1. 使用apt-get安装Nginx

    Ubuntu 18.04,Nginx 1.14.0, 一直想在Linux上安装Nginx,一直没找到契机,很大原因是自己不熟悉,Ubuntu没安装好吧!今天下午学习了Ubuntu安装软件的一些资料,那 ...

  2. Python 安装requests模块

    window下安装: 注:不要使用 easy_install requests 命令 这种方式安装后不能卸载,建议使用pip 方法 1.自动安装 输入cmd命令进入命令行窗口,执行 pip insta ...

  3. IntelliJ IDEA + Tomcat 部署问题

    首先要了解下 tomcat的 几种部署方式(大致分为静态部署和动态部署),可以百度,博客:http://qsfwy.iteye.com/blog/466461 IntelliJ IDEA 下部署项目的 ...

  4. 5 个非常有用的 Laravel Blade 指令,你用过哪些?

    接下来我将带大家认识下五个 Laravel Blade 指令,这些指令将让你在解决特定问题时如虎添翼.如果你是刚接触 Laravel 的用户,这些小技巧能带你认识到 Laravel Blade 模板引 ...

  5. 用django-cors-headers做跨域

    什么是CORS? CORS(跨域资源共享,Cross-Origin Resource Sharing)是一种跨域访问的机制,可以让Ajax实现跨域访问. 其实,在服务器的response header ...

  6. **汇总CodeIgniter(CI)的数据库操作函数

    //查询: $query = $this->db_query("SELECT * FROM table"); ================================ ...

  7. 第五届CCF软件能力认证

    1.数列分段 问题描述 给定一个整数数列,数列中连续相同的最长整数序列算成一段,问数列中共有多少段? 输入格式 输入的第一行包含一个整数n,表示数列中整数的个数. 第二行包含n个整数a1, a2, … ...

  8. PivotGridControl控件应用

    一.概述 PivotGridControl是DevExpress组件中的一个重要控件,在数据多维分析方面具有强大的功能,它不仅可以分析数据库中的数据,而且还能够做联机分析处理(OLAP),并且支持多种 ...

  9. logstash部署及基本语法(二)

    一.logstash介绍 Logstash是一个开源的数据收集引擎,可以水平伸缩,而且logstash是整个ELK当中拥有最多插件的一个组件,其可以接收来自不同源的数据并统一输入到指定的且可以是不同目 ...

  10. git推送本地仓库到github

    总结一下,方便后人,也方便自己查阅.直接写步骤 一.本地创建一个文件夹,在里面写项目的文件(* .php/*.js.....). git本地操作: 1 .  cd  /path/to/project  ...