B - Alice and Bob

Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

  Alice and Bob's game never ends. Today, they introduce a new game. In this game, both of them have N different rectangular cards respectively.   
  Alice wants to use his cards to cover Bob's. The card A can cover the card B if the height of A is not smaller than B and the width of A is not smaller than B. As the best programmer, you are asked to compute the maximal number of Bob's cards that Alice can cover.
Please pay attention that each card can be used only once and the cards cannot be rotated.
 

Input

  The first line of the input is a number T (T <= 40) which means the number of test cases.

  For each case, the first line is a number N which means the
number of cards that Alice and Bob have respectively. Each of the
following N (N <= 100,000) lines contains two integers h (h <=
1,000,000,000) and w (w <= 1,000,000,000) which means the height and
width of Alice's card, then the following N lines means that of Bob's.
 

Output

  For each test case, output an answer using one line which contains just one number.
 

Sample Input

2
2
1 2
3 4
2 3
4 5
3
2 3
5 7
6 8
4 1
2 5
3 4
 

Sample Output

1 2
 题意:10W个数据,A有n张牌,B有n张牌,然后如果a.x>=b.x&&a.y>=b.y 那么A就可以覆盖B
然后问你最多覆盖多少张
题解:暴力非常好想,O(n^2)跑一发就是,但是会T
那么我们就二分查找,或者用STL就好

multiset<int> myset;
multiset<int>::iterator it;
const int maxn=200000;
struct node
{
int x,y;
bool operator<(const node& b)const
{
return x<b.x;
}
}a[maxn],b[maxn];
int main()
{
int sec,n;
scanf("%d",&sec);
for(int z=1;z<=sec;z++)
{
myset.clear();
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
for(int i=1;i<=n;i++)
scanf("%d%d",&b[i].x,&b[i].y);
sort(a+1,a+1+n);//按x从小到大排序
sort(b+1,b+1+n);//按x从小到大排序
int j=1;int ans=0;//j是一个指向B数组位置的指针
for(int i=1;i<=n;i++)
{
while(j<=n&&b[j].x<=a[i].x)
{
myset.insert(b[j].y);
j++;
}
it=myset.upper_bound(a[i].y);
if(myset.size()>0&&it!=myset.begin())it--;
if(myset.size()>0&&(*it)<=a[i].y)
{
ans++;
myset.erase(it);
}
}
printf("%d\n",ans);
}
return 0;
}
 

HDU 4268 Alice and Bob 贪心STL O(nlogn)的更多相关文章

  1. HDU 4268 Alice and Bob(贪心+Multiset的应用)

     题意: Alice和Bob有n个长方形,有长度和宽度,一个矩形能够覆盖还有一个矩形的条件的是,本身长度大于等于还有一个矩形,且宽度大于等于还有一个矩形.矩形不可旋转.问你Alice最多能覆盖Bo ...

  2. hdu 4268 Alice and Bob(multiset|段树)

    Alice and Bob Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  3. hdu 4268 Alice and Bob

    Alice and Bob Time Limit : 10000/5000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Tota ...

  4. hdu 4268 Alice and Bob(贪心+multiset)

    题意:卡牌覆盖,每张卡牌有高(height)和宽(width).求alice的卡牌最多可以覆盖多少bob的卡牌 思路:贪心方法就是找h可以覆盖的条件下找w最大的去覆盖. #include<ios ...

  5. HDU 4268 Alice and Bob set用法

    题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=4268 贪心思想,用set实现平衡树,但是set有唯一性,所以要用 multiset AC代码: #i ...

  6. Alice and Bob(贪心HDU 4268)

    Alice and Bob Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  7. hdu 4111 Alice and Bob 记忆化搜索 博弈论

    Alice and Bob Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

  8. hdu 3660 Alice and Bob's Trip(树形DP)

    Alice and Bob's Trip Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  9. HDU 5054 Alice and Bob(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5054 Problem Description Bob and Alice got separated ...

随机推荐

  1. Django中cookie和session

    cookie Cookie的由来 大家都知道HTTP协议是无状态的. 无状态的意思是每次请求都是独立的,它的执行情况和结果与前面的请求和之后的请求都无直接关系,它不会受前面的请求响应情况直接影响,也不 ...

  2. js API

    从基础知识JS-web-API js基础知识:ECMA 262标准 js-web-API: w3c标准 W3c标准中关于js的规定有 DOM操作.BOM操作.事件绑定.ajax请求(包括http协议) ...

  3. PlantUML——4.实例演示1

    给自己发消息 @startuml Alice -> Alice : This is a signal to self.\nIt also demonstrates \nmultiline tex ...

  4. H5新特性:video与audio的使用

    HTML5 DOM 为 <audio> 和 <video> 元素提供了方法.属性和事件. 这些方法.属性和事件允许您使用 JavaScript 来操作 <audio> ...

  5. jquery中获取iframe的id的方法:

    jquery中获取iframe的id的方法: var frameId = window.frameElement && window.frameElement.id || ''; al ...

  6. 【LOJ】#2069. 「SDOI2016」齿轮

    题解 我一开始还努力想这道题是不是有坑,被SDOI折磨到我觉得不能有那么水的题在-- 就是带权并查集维护一下两点间距离,如果新加一条边两个点在同一集合,看看已有的路径和新加的路径是否相等 乘积可以在模 ...

  7. USACO 6.2 Packing Rectangles

    Packing RectanglesIOI 95 The six basic layouts of four rectangles Four rectangles are given. Find th ...

  8. Linux下Github的使用方法

    1 Linux下Git和GitHub环境的搭建 安装Git, 使用命令sudo apt-get install git 创建GitHub帐号 生成ssh key,使用命令 ssh-keygen -t ...

  9. chrome浏览器视频插件

    以前安装chrome浏览器flash插件是将libflashplayer.so拷贝到chrome浏览器的plugins目录下.但最近好像不行了. 于是换了另一插件:pepperflashplugin- ...

  10. Ionic Js十:加载动作

    $ionicLoading 是 ionic 默认的一个加载交互效果.里面的内容也是可以在模板里面修改. 用法 angular.module('LoadingApp', ['ionic']) .cont ...