Machine Learning Trick of the Day (2): Gaussian Integral Trick
Machine Learning Trick of the Day (2): Gaussian Integral Trick
Today's trick, the Gaussian integral trick, is one that allows us to re-express a (potentially troublesome) function in an alternative form, in particular, as an integral of a Gaussian against another function — integrals against a Gaussian turn out not to be too troublesome and can provide many statistical and computational benefits. One popular setting where we can exploit such an alternative representation is for inference in discrete undirected graphical models (think Boltzmann machines or discrete Markov random fields). In such cases, this trick lets us transform our discrete problem into one that has an underlying continuous (Gaussian) representation, which we can then solve using our other machine learning tricks. But this is part of a more general strategy that is used throughout machine learning, whether in Bayesian posterior analysis, deep learning or kernel machines. This trick has many facets, and this post explores the Gaussian integral trick and its more general form, auxiliary variable augmentation.
Gaussian integral trick state expansion.
Gaussian Integral Trick
The Gaussian integral trick is one of the statistical flavour and allows us to turn a function that is an exponential in x2 into an exponential that is linear in x. We do this by augmenting a linear function with auxiliary variables and then integrating over these auxiliary variables, hence a form of auxiliary variable augmentation. The simplest form of this trick is to apply the following identity:
We can prove this to ourselves by exploiting our knowledge of Gaussian distributions (which this looks strikingly similar to) and our ability to complete the square when we see such quadratic forms. Separating out the scaling factor a we get:
Which by completing the square becomes:
where the last integral is solved by matching it to a Gaussian with mean μ=x2a and variance σ2=12a, which we know has a normalisation of 2πσ2−−−−√ — this last step shows how this trick got its name.
The 'Gaussian integral trick' was coined and initially described by Hertz et al. [Ch10, pg 253] [1], and is closely related to the Hubbard-Stratonovich transform (which provides the augmentation for exp(−x2)).
Transforming Binary MRFs
This trick is also valid in the multivariate case, which is what we will most often be interested in. One good place to see this trick in action is when applied to binary MRFs or Boltzmann machines. Binary MRFs have a joint probability, for binary random variables x:
where Z, is the normalising constant. The (multivariate) Gaussian integral trick can be applied to the quadratic term in this energy function allowing for an insightful analysis andinteresting reparameterisation that allows for alternative inference methods to be used. For example:
- We can conduct an analysis of Boltzmann machines that when combined with our earlier trick, (trick 1) the replica trick, allows for theoretical predictions about the performance of this model. See:
- Formal statistical Mechanics of neural networks, section 10.1 (eq 10.5), Hertz et al. [1]
- We can use the trick to create a Gaussian augmented space for discrete MRFs to which Hamiltonian Monte Carlo, previously restricted to continuous and differentiable models, can be applied [2][3]. See:
- Continuous Relaxations for Discrete Hamiltonian Monte Carlo, Zhang et al.
- Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions. Pakman and Paninski.
Variable Augmentation
Graphical model for a general augmentation.
This trick is a special case of a more general strategy called variable (or data) augmentation — I prefervariable augmentation to data augmentation [4], since it will not be confused with observed data preprocessing and manipulation. In this setting, the introduction of auxiliary variables has been most often used to develop better mixing Markov chain Monte Carlo samplers. This is because after augmentation, the conditional distributions of the model often have highly convenient and easy-to-sample-from forms.
One recent example of variable augmentation (and that parallels our initial trick) is the Polya-Gamma variable augmentation. In this case, we can express the sigmoid function that appears when computing the mean of the Bernoulli distribution, as:
where p(y) has a Polya-Gamma distribution [5]. This nicely transforms the sigmoid into a Gaussian convolution (integrated against a Polya-Gamma random variable) — and gives us a different type of Gaussian integral trick. In fact, similar Gaussian integral tricks are abound, and are typically described under the heading of Gaussian scale-mixture distributions.
There are many examples of variable augmentation to be found, especially for binary and categorical distributions. Much guidance is available, and some papers that demonstrate this are:
- Albert and Chib's paper is one of the first where the concept of data augmentation is most clearly established, and to whom data augmentation is most often attributed. It shows augmentation for binary and categorical variables — a classic paper that everyone should read.
- Polson and Scott introduced the Polya-Gamma augmentation I described above, and is amongst the more recent of augmentation strategies. This augmentation can be used for more effective Monte Carlo or variational inference, e.g.,
- Ultimately, finding a good augmentation relies on exploiting known and tractable integrals. As such there can be a bit of an art to creating such augmentations and is what Van Dyk and Meng discuss.
Summary
The Gaussian integral trick is just one from a large class of variable augmentation strategies that are widely used in statistics and machine learning. They work by introducing auxiliary variables into our problems that induce an alternative representation, and that then give us additional statistical and computational benefits. Such methods lie at the heart of efficient inference algorithms, whether these be Monte Carlo or deterministic approximate inference schemes, making variable augmentation a favourite in our box of machine learning tricks.
Some References
| [1] | John Hertz, Anders Krogh, Richard G Palmer, Introduction to the theory of neural computation, , 1991 |
| [2] | Yichuan Zhang, Zoubin Ghahramani, Amos J Storkey, Charles A Sutton, Continuous relaxations for discrete hamiltonian monte carlo, Advances in Neural Information Processing Systems, 2012 |
| [3] | Ari Pakman, Liam Paninski, Auxiliary-variable exact Hamiltonian Monte Carlo samplers for binary distributions, Advances in Neural Information Processing Systems, 2013 |
| [4] | James H Albert, Siddhartha Chib, Bayesian analysis of binary and polychotomous response data, Journal of the American statistical Association, 1993 |
| [5] | Nicholas G Polson, James G Scott, Jesse Windle, Bayesian inference for logistic models using P\'olya--Gamma latent variables, Journal of the American Statistical Association, 2013 |
Machine Learning Trick of the Day (2): Gaussian Integral Trick的更多相关文章
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- Machine Learning Trick of the Day (1): Replica Trick
Machine Learning Trick of the Day (1): Replica Trick 'Tricks' of all sorts are used throughout machi ...
- Kernel Functions for Machine Learning Applications
In recent years, Kernel methods have received major attention, particularly due to the increased pop ...
- Machine Learning for Developers
Machine Learning for Developers Most developers these days have heard of machine learning, but when ...
- 学习笔记之Machine Learning Crash Course | Google Developers
Machine Learning Crash Course | Google Developers https://developers.google.com/machine-learning/c ...
- How do I learn mathematics for machine learning?
https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning How do I learn mathematics f ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- [C2P1] Andrew Ng - Machine Learning
About this Course Machine learning is the science of getting computers to act without being explicit ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
随机推荐
- Mininet安装,简单实现一个网络拓扑结构
安装mininet Mininet安装教程,可以按照这个来,然而这个虚拟机有时会很难装.可以考虑如下的做法:先 git clone,cd mininet 和 cat INSTALL之后,可以在提示信息 ...
- JS获取地址栏中的链接URL参数
function getUrlParam(name){ var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&am ...
- selenium使用execl实现数据驱动测试
import java.io.FileInputStream;import java.io.IOException;import java.io.InputStream;import java.uti ...
- zabbix 自定义监控nginx
zabbix自定义nginx监控项 查看nginx编译安装是否加上该选项,如果没有请重新编译安装 配置nginx.conf vim /usr/local/cpgroup/nginx/conf/vhos ...
- python对excel操作
学习一下:原文链接:http://www.cnblogs.com/lhj588/archive/2012/01/06/2314181.html 一.安装xlrd模块 到python官网下载http:/ ...
- Oracle 修改dmp的表空间
1.百度下载 UltraEdit 并安装 2.打开程序,文件-->打开-->找到dmp 文件太大会提示,选择第一个默认,确定 3.按CTRL+H 转成十六进制编辑 4.例如:dmp里面 ...
- 【刷题】BZOJ 4657 tower
Description Nick最近在玩一款很好玩的游戏,游戏规则是这样的: 有一个n*m的地图,地图上的每一个位置要么是空地,要么是炮塔,要么是一些BETA狗,Nick需要操纵炮塔攻击BETA狗们. ...
- VUE开发一个图片轮播的组件
完成效果图如下: vue开发的思路主要是数据绑定,代码如下: <template> <div ref="root" style="user-select ...
- SHA1WithRSA签名 规范化标准签名
#region CerRsaSignature 根据私钥签名 /// <summary> /// 根据私钥串签名 /// </summary> /// <param na ...
- Android Studio下“Error:Could not find com.android.tools.build:gradle:2.2.1”的解决方法
ref from: Android Studio下“Error:Could not find com.android.tools.build:gradle:2.2.1”的解决方法http://blog ...