BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算
BZOJ 2337 XOR和路径

题解
这道题和游走那道题很像,但又不是完全相同。
因为异或,所以我们考虑拆位,分别考虑每一位;
设x[u]是从点u出发、到达点n时这一位异或和是1的概率。
对于所有这一位是1的边,若一个端点是u、另一个是v,则x[u] += (1 - x[v]) / deg[u],反之亦然;
对于这一位是0的边,x[u] += x[v] / deg[u],反之亦然。
然后得到好多方程,高斯消元即可。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 105, M = 10005;
int n, m, u[M], v[M], w[M], deg[N];
double f[N][N], ans;
void build(int p){
memset(f, 0, sizeof(f));
for(int i = 1; i < n; i++) f[i][i] = deg[i];
for(int e = 1; e <= m; e++){
if(w[e] & (1 << p)){
f[u[e]][v[e]] += 1, f[u[e]][n + 1] += 1;
if(u[e] != v[e]) f[v[e]][u[e]] += 1, f[v[e]][n + 1] += 1;
}
else{
f[u[e]][v[e]] += -1;
if(u[e] != v[e]) f[v[e]][u[e]] += -1;
}
}
for(int i = 1; i < n; i++) f[n][i] = 0;
f[n][n] = 1, f[n][n + 1] = 0;
}
void Gauss(){
for(int i = 1; i <= n; i++){
int l = i;
for(int j = i + 1; j <= n; j++)
if(fabs(f[j][i]) > fabs(f[l][i])) l = j;
if(i != l)
for(int j = i; j <= n + 1; j++)
swap(f[i][j], f[l][j]);
for(int j = n + 1; j >= i; j--)
f[i][j] /= f[i][i];
for(int j = i + 1; j <= n; j++)
for(int k = n + 1; k >= i; k--)
f[j][k] -= f[j][i] * f[i][k];
}
for(int i = n; i; i--)
for(int j = 1; j < i; j++)
f[j][n + 1] -= f[j][i] * f[i][n + 1];
}
int main(){
read(n), read(m);
for(int i = 1; i <= m; i++){
read(u[i]), read(v[i]), read(w[i]);
deg[u[i]]++;
if(u[i] != v[i]) deg[v[i]]++;
}
for(int i = 0; i < 31; i++){
build(i);
Gauss();
ans += f[1][n + 1] * (1 << i);
}
printf("%.3lf\n", ans);
return 0;
}
BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算的更多相关文章
- BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )
一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...
- BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]
2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...
- 【BZOJ2337】XOR和路径(高斯消元)
题目链接 大意 给出\(N\)个点,\(M\)条边的一张图,其中每条边都有一个非负整数边权. 一个人从1号点出发,在与该点相连的边中等概率的选择一条游走,直到走到\(N\)号点. 问:将这条路径上的边 ...
- BZOJ 3143 HNOI2013 游走 高斯消元 期望
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...
- BZOJ2337:[HNOI2011]XOR和路径(高斯消元)
Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...
- bzoj2337 XOR和路径——高斯消元
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2337 异或就一位一位考虑: x为到n的概率,解方程组即可: 考虑了n就各种蜜汁错误,所以索性 ...
- BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)
解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...
- [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)
[BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...
- HDU2262;Where is the canteen(高斯消元+期望)
传送门 题意 给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望 分析 该题是一道高斯消元+期望的题目 难点在于构造矩阵,我们发现以下结论 设某点走到餐厅的期望为Ek 1 ...
随机推荐
- NO--14 微信小程序,左右联动二
上一篇讲解了左=>右联动,那个还比较简单,本篇写剩下比较核心的部分,也是本次开发过程中遇到最难的部分,右=>左联动,先简单看一下演示 右左联动.gif 一.关键技术: (1) 小程序 ...
- FFM原理及公式推导
原文来自:博客园(华夏35度)http://www.cnblogs.com/zhangchaoyang 作者:Orisun 上一篇讲了FM(Factorization Machines),说一说FFM ...
- python破解网吧收费系统,远控网吧电脑设备!
我今天呢 , 我就没事跟着朋友喝酒喝酒啊.喝了很多啊.晚上到旁边的酒店开了一个房间,到了酒店才十点! 感觉没啥事情干的,那就去网吧走走看把,看到是一个嘟嘟牛的,和上次是一样的.还是照常用MS170 ...
- MAC node + git + bower 简单安装
一 node 安装 打开https://nodejs.org/en/ nodejs官网 下载安装文件 双击.pkg 文件 自动安装即可 二 安装git 打开 http://code.google.co ...
- sqlmap 进阶 (一)
0x1 命令 以此类推,可以具体自己研究有哪些参数,放在哪,有什么用,怎么用 参考:https://blog.csdn.net/bo_mask/article/details/76130848 0x2 ...
- Kubernetes探索学习004--深入Kubernetes的Pod
深入研究学习Pod 首先需要认识到Pod才是Kubernetes项目中最小的编排单位原子单位,凡是涉及到调度,网络,存储层面的,基本上都是Pod级别的!官方是用这样的语言来描述的: A Pod is ...
- 一个demo 理解 vuex
相比接触vue的同学们已经看了官方文档了.这里我用一个简单的demo来阐述下vuex的知识点,虽然简单,但是容易理解.也加深自己的记忆. 用脚手架建立个项目vue init webpakc-simpl ...
- YQCB冲刺周第五天
站立会议: 任务看板: 今天的任务为依旧为将用户记录的数据添加到数据库中,以及金额球的设置. 遇到的问题为金额球在jsp页面的显示.
- Java基础第一节.Java简介
第一节 Java简介 Java是一个由Sun公司开发而成的新一代的编程语言. Java语言是对软件开发有深远影响.应用前景广泛.具有丰富的类库.继承了C++的传统(摈弃了某些不足)广泛使用的网络编程语 ...
- 软件工程实践2018第六次作业——现场UML作图
团队信息 学号 姓名 博客链接 124 王彬(组长) 点击这里 206 赵畅 点击这里 215 胡展瑞 点击这里 320 李恒达 点击这里 131 佘岳昕 点击这里 431 王源 点击这里 206 陈 ...