BZOJ 2337 XOR和路径

题解

这道题和游走那道题很像,但又不是完全相同。

因为异或,所以我们考虑拆位,分别考虑每一位;

设x[u]是从点u出发、到达点n时这一位异或和是1的概率。

对于所有这一位是1的边,若一个端点是u、另一个是v,则x[u] += (1 - x[v]) / deg[u],反之亦然;

对于这一位是0的边,x[u] += x[v] / deg[u],反之亦然。

然后得到好多方程,高斯消元即可。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 105, M = 10005;
int n, m, u[M], v[M], w[M], deg[N];
double f[N][N], ans;
void build(int p){
memset(f, 0, sizeof(f));
for(int i = 1; i < n; i++) f[i][i] = deg[i];
for(int e = 1; e <= m; e++){
if(w[e] & (1 << p)){
f[u[e]][v[e]] += 1, f[u[e]][n + 1] += 1;
if(u[e] != v[e]) f[v[e]][u[e]] += 1, f[v[e]][n + 1] += 1;
}
else{
f[u[e]][v[e]] += -1;
if(u[e] != v[e]) f[v[e]][u[e]] += -1;
}
}
for(int i = 1; i < n; i++) f[n][i] = 0;
f[n][n] = 1, f[n][n + 1] = 0;
}
void Gauss(){
for(int i = 1; i <= n; i++){
int l = i;
for(int j = i + 1; j <= n; j++)
if(fabs(f[j][i]) > fabs(f[l][i])) l = j;
if(i != l)
for(int j = i; j <= n + 1; j++)
swap(f[i][j], f[l][j]);
for(int j = n + 1; j >= i; j--)
f[i][j] /= f[i][i];
for(int j = i + 1; j <= n; j++)
for(int k = n + 1; k >= i; k--)
f[j][k] -= f[j][i] * f[i][k];
}
for(int i = n; i; i--)
for(int j = 1; j < i; j++)
f[j][n + 1] -= f[j][i] * f[i][n + 1];
}
int main(){
read(n), read(m);
for(int i = 1; i <= m; i++){
read(u[i]), read(v[i]), read(w[i]);
deg[u[i]]++;
if(u[i] != v[i]) deg[v[i]]++;
}
for(int i = 0; i < 31; i++){
build(i);
Gauss();
ans += f[1][n + 1] * (1 << i);
}
printf("%.3lf\n", ans);
return 0;
}

BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算的更多相关文章

  1. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  2. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  3. 【BZOJ2337】XOR和路径(高斯消元)

    题目链接 大意 给出\(N\)个点,\(M\)条边的一张图,其中每条边都有一个非负整数边权. 一个人从1号点出发,在与该点相连的边中等概率的选择一条游走,直到走到\(N\)号点. 问:将这条路径上的边 ...

  4. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  5. BZOJ2337:[HNOI2011]XOR和路径(高斯消元)

    Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...

  6. bzoj2337 XOR和路径——高斯消元

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2337 异或就一位一位考虑: x为到n的概率,解方程组即可: 考虑了n就各种蜜汁错误,所以索性 ...

  7. BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)

    解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...

  8. [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash)

    [BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上, ...

  9. HDU2262;Where is the canteen(高斯消元+期望)

    传送门 题意 给出一张图,LL从一个点等概率走到上下左右位置,询问LL从宿舍走到餐厅的步数期望 分析 该题是一道高斯消元+期望的题目 难点在于构造矩阵,我们发现以下结论 设某点走到餐厅的期望为Ek 1 ...

随机推荐

  1. SQL Server 各版本安装包分享

    已将SQL Server 2005以上各版本的安装包分享到百度云盘,有需要的朋友可以下载进行安装,相关安装教程可以百度搜索.安装遇到难以解决的问题可以留言给我,2016版以上在选择功能的时候建议初学者 ...

  2. pytorch中的Linear Layer(线性层)

    LINEAR LAYERS Linear Examples: >>> m = nn.Linear(20, 30) >>> input = torch.randn(1 ...

  3. 半年收入超2亿RMB 独立游戏开发者的艰苦创业路

    一款叫做<监狱建筑师>的模拟经营游戏,目前在Steam平台获得了3000万美元(近2亿元)以上的收入.这款游戏由英国独立工作室Introversion Software发布,而团队最困难的 ...

  4. windows 7 php 7.1 命令行 执行 中文文件名 的PHP文件

    在PHP5.6时代直接执行 php.exe  文件.php 是没有的这个问题 在win下的命令行中 活动代码页命令 chcp 修改 chcp 936  //gbk chcp 65001 //utf-8 ...

  5. TIME_WAIT 你好!

    [root@vm-10-124-66-212 ~]# netstat -an|awk -F ' ' '{print $NF}'|sort |uniq -c |sort -rn|more 5552 TI ...

  6. Scrum立会报告+燃尽图(十二月五日总第三十六次):Final阶段分配任务

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...

  7. 北航MOOC系统Android客户端NABC

    北航MOOC手机客户端NABC分析 1) N (Need 需求) MOOC是Massive Open Online Course的缩写,通常被译为大型开放式网络课程,它最早在08年的时候由一位加拿大的 ...

  8. 第三次博客作业JSF

    JSF规格化设计发展史以及为什么得到人们重视 查阅了n多资料但是仍然没找到. 就说一些jsf的优势吧. 优势:    (1)UI组件 (2)事件驱动模式 (3)用户界面到业务逻辑的直接映射 (4)程序 ...

  9. js弹出框 -搜索

    警告框alert() alert是警告框,只有一个按钮“确定”无返回值,警告框经常用于确保用户可以得到某些信息.当警告框出现后,用户需要点击确定按钮才能继续进行操作.语法:alert("文本 ...

  10. 《校友聊—方便使用之NABCD》

    <校友聊—方便使用之NABCD> 方便使用特点的分析与总结: N:由于一些软件的人机交互性很差,人性化性能低,使用不方便,故,鉴于此需求:A:用户可根据系统界面的友好提示一步步进行:B:提 ...