neurolab模块相当于Matlab的神经网络工具箱(NNT)

neurolab模块支持的网络类型:

  • 单层感知机(single layer perceptron)
  • 多层前馈感知机(Multilayer feed forward perceptron)
  • 竞争层(Kohonen Layer)
  • 学习向量量化(Learning Vector Quantization)
  • Elman循环网络(Elman recurrent network)
  • Hopfield循环网络(Hopfield recurrent network)
  • 卷边循环网络(Hemming recurrent network)

这里以多层前馈网络为例:neurolab.net.newff(minmaxsizetransf=None)

Parameters:
minmax: list of list, the outer list is the number of input neurons,

inner lists must contain 2 elements: min and max

Range of input value

size: the length of list equal to the number of layers except input layer,

the element of the list is the neuron number for corresponding layer

Contains the number of neurons for each layer

transf: list (default TanSig)

List of activation function for each layer

minmax:列表的列表,外层列表表示输入层的神经元个数,内层列表必须包含两个元素:max和min

size:列表的长度等于出去输入层的网络的层数,列表的元素对应于各层的神经元个数

transf:激活函数,默认为TanSig。

举例2:

perceptron = nl.net.newp([[0, 2],[0, 2]], 1)
第一个参数列表的长度表示输出的节点的个数,列表中得每一个元素包含两个值:最大值和最小值。
第二个参数:The value “1” indicates that there is a single neuron in this network.
error = perceptron.train(input_data, output, epochs=50, show=15, lr=0.01)
epochs:表示迭代训练的次数,show:表示终端输出的频率,lr:表示学习率

举例3:

import numpy as np
import neurolab as nl input = np.random.uniform(0, 0.1, (1000, 225))
output = input[:,:10] + input[:,10:20]
# 2 layers with 225 inputs 50 neurons in hidden\input layer and 10 in output
# for 3 layers use some thet: nl.net.newff([[0, .1]]*225, [50, 40, 10])
net = nl.net.newff([[0, .1]]*225, [50, 10])
net.trainf = nl.train.train_bfgs e = net.train(input, output, show=1, epochs=100, goal=0.0001)

举例4:

import neurolab as nl
import numpy as np
# Create train samples
x = np.linspace(-7, 7, 20)
y = np.sin(x) * 0.5 size = len(x) inp = x.reshape(size,1)
tar = y.reshape(size,1) # Create network with 2 layers and random initialized
net = nl.net.newff([[-7, 7]],[5, 1]) # Train network
error = net.train(inp, tar, epochs=500, show=100, goal=0.02) # Simulate network
out = net.sim(inp) # Plot result
import pylab as pl
pl.subplot(211)
pl.plot(error)
pl.xlabel('Epoch number')
pl.ylabel('error (default SSE)') x2 = np.linspace(-6.0,6.0,150)
y2 = net.sim(x2.reshape(x2.size,1)).reshape(x2.size)
print(len(y2))
y3 = out.reshape(size)
pl.subplot(212)
pl.plot(x2, y2, '-',x , y, '.', x, y3, 'p')
pl.legend(['train target', 'net output'])
pl.show()

资料还有很多,以后继续补充

重点参考:官网
资料

python 神经网络包 NeuroLab的更多相关文章

  1. 搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台

    搭建基于python +opencv+Beautifulsoup+Neurolab机器学习平台 By 子敬叔叔 最近在学习麦好的<机器学习实践指南案例应用解析第二版>,在安装学习环境的时候 ...

  2. 【转】pybrain的使用——一个开源的python神经网络工具包

    原文地址   http://lavimo.blog.163.com/blog/static/2149411532013911115316263/ 昨天的主要活动内容是找一个神经网络的包....= =这 ...

  3. LFD,非官方的Windows二进制文件的Python扩展包

    LFD,非官方的Windows二进制文件的Python扩展包 LFD,非官方版本.32和64位.Windows.二进制文件.科学开源.Python扩展包 克里斯托夫·戈尔克(by Christoph ...

  4. python库包大全(转)

    python 库资源大全 转自: Python 资源大全中文版 环境管理 管理 Python 版本和环境的工具 p:非常简单的交互式 python 版本管理工具.官网 pyenv:简单的 Python ...

  5. TensorFlow常用Python扩展包

    TensorFlow常用Python扩展包 TensorFlow 能够实现大部分神经网络的功能.但是,这还是不够的.对于预处理任务.序列化甚至绘图任务,还需要更多的 Python 包. 下面列出了一些 ...

  6. 机器学习常用Python扩展包

    在Ubuntu下安装Python模块通常有3种方法:1)使用apt-get:2)使用pip命令(推荐);3)easy_instal 可安装方法参考:[转]linux和windows下安装python集 ...

  7. Python的包管理工具Pip (zz )

    Python的包管理工具Pip 接触了Ruby,发现它有个包管理工具RubyGem很好用,并且有很完备的文档系统http://rdoc.info 发现Python下也有同样的工具,包括easy_ins ...

  8. 简易安装python统计包

    PythonCharm简易安装python统计包及 本文介绍使用pythonCharm IDE 来安装Python统计包或一些packages的简单过程,基本无任何技术难度,顺便提一提笔者在安装过程中 ...

  9. 安装python 的 包 paramiko

    安装python 的 包 paramiko 安装 依赖 yum -y install gcc python-devel 获取安装 pycryptowget https://pypi.python.or ...

随机推荐

  1. 使用jsonp跨域发送请求

    如果获取的数据文件存放在远程服务器上(域名不同,也就是跨域获取数据),则需要使用jsonp类型. 使用这种类型的话,会创建一个查询字符串参数 callback=? ,这个参数会加在请求的URL后面. ...

  2. sql优化常用命令总结

    1.显示执行计划的详细步骤 SET SHOWPLAN_ALL ON; SET SHOWPLAN_ALL OFF; 2. 显示执行语句的IO成本,时间成本 SET STATISTICS IO ON SE ...

  3. 【转】MEF程序设计指南三:MEF中组合部件(Composable Parts)与契约(Contracts)的基本应用

    按照MEF的约定,任何一个类或者是接口的实现都可以通过[System.ComponentModel.Composition.ExportAttribute] 特性将其定义为组合部件(Composabl ...

  4. CF 1023D Array Restoration - 线段树

    题解 非常容易想到的线段树, 还可以用并查集来. 还有一位大神用了$O(n)$ 就过了Orz 要判断是否能染色出输入给出的序列,必须满足两个条件: 1. 序列中必须存在一个$q$ 2. 两个相同的数$ ...

  5. dump()

    输出格式化的对象

  6. Laravel 认证原理及完全自定义认证

    Laravel 默认的 auth 功能已经是很全面了,但是我们也经常会碰到一些需要自定义的一些情况,比如验证的字段和默认的不匹配,比如需要能够同时满足 user name 和 email 认证等等.如 ...

  7. 从一个流中读数据--fread

    头文件:#include<stdio.h> 函数原型:int fread(void *ptr,int size,int nitems,FILE *stream); 参数说明: ptr:用于 ...

  8. 【Web】Nginx下载与安装

    Nginx介绍 Nginx ("engine x") 是一个高性能的HTTP和反向代理服务器,也是一个IMAP/POP3/SMTP服务器.Nginx是由Igor Sysoev为俄罗 ...

  9. unidac 6.0.1 与kbmmw 的一点小摩擦

    unidac 6.0.1  出来了,虽然支持sql server 直连等新特性,但是由于内部改动比较大, 导致与kmmmw 的集成起来存在有点小问题,就是如果数据库不是interbase 或者fire ...

  10. window server2012服务器上如何安装nginx并启动

    window环境下,Nginx安装启动的步骤如下: 把下载的window下的安装包,解压到一个不包含空格的路径下,比如:d:/Nginx 打开命令行窗口[win+R 输入cmd,然后确定]. 进入解压 ...