Description

有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。

若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,

那么这两个数字可以配对,并获得 ci×cj 的价值。

一个数字只能参与一次配对,可以不参与配对。

在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。


对于满足条件的\(a_i/a_j\)一定要满足\(a_i\)的质因子个数比\(a_j\)大一

所以可以对于每个数的质因子个数建二分图,只有异侧才有连边

至于总价值不小于0,在总价值<0的时候停止就行了


#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
#define M 1000001
#define LL long long
using namespace std; LL t,n,m,k,a[M],b[M],c[M],edge[M],nex[M],head[M],ver[M],cnt=1,h[M],d[M],cs[M],inq[M],cur[M],w[M],e[M],ed,zz,ans;
queue <LL> q;
void add(LL x,LL y,LL z,LL co)
{
ver[++cnt]=y; nex[cnt]=head[x]; head[x]=cnt; edge[cnt]=z; cs[cnt]=co;
ver[++cnt]=x; nex[cnt]=head[y]; head[y]=cnt; edge[cnt]=0; cs[cnt]=-co;
} bool spfa()
{
memset(d,0,sizeof(d));
memcpy(cur, head, sizeof(head));
while(q.size()) q.pop();
memset(h,-0x3f,sizeof(h));
q.push(0); d[0]=1; h[0]=0;
while(q.size())
{
LL x=q.front(); q.pop(); inq[x]=0;
for(LL i=head[x];i;i=nex[i])
if(edge[i] && h[ver[i]]<h[x]+cs[i])
{
h[ver[i]]=h[x]+cs[i]; d[ver[i]]=d[x]+1;
if(!inq[ver[i]]) q.push(ver[i]);
inq[ver[i]]=1;
}
}
if(d[t]) return 1;
return 0;
} LL dinic(LL x,LL flow)
{
if(!flow || x==t) return flow;
LL re=flow, k;
for(LL & i=cur[x];i && re;i=nex[i])
if(edge[i] && h[ver[i]]==h[x]+cs[i] && d[ver[i]]==d[x]+1)
{
k=dinic(ver[i],min(re, edge[i]));
re-=k; edge[i]-=k; edge[i^1]+=k;
}
return flow-re;
} LL fj(LL x)
{
if(x==1) return 0;
LL k=sqrt(x),ans=0; k+=1;
for(LL i=2;i<=k;i++) if(x%i==0) while(x%i==0) x/=i,ans+=1;
if(x!=1) ans+=1;
return ans;
} int main()
{
scanf("%lld",&n); t=n+1;
for(LL i=1;i<=n;i++) scanf("%lld",&a[i]);
for(LL i=1;i<=n;i++) scanf("%lld",&b[i]);
for(LL i=1;i<=n;i++) scanf("%lld",&c[i]);
for(LL i=1;i<=n;i++)
w[i]=fj(a[i]);
for(LL i=1;i<=n;i++) if(w[i]%2)
for(LL j=1;j<=n;j++) if(w[j]%2==0 && ((a[i]%a[j]==0 && w[i]==w[j]+1)||(a[j]%a[i]==0 && w[j]==w[i]+1)))
add(i,j,0x3f3f3f3f,c[i]*c[j]);
for(LL i=1;i<=n;i++) if(w[i]%2) add(0,i,b[i],0);
else add(i,t,b[i],0);
while(spfa())
{
bool bll=1;
while(k=dinic(0,0x3f3f3f3f))
{
if(ed+h[t]*k<0)
{ans+=ed/(-h[t]); bll=0; break;}
ed+=h[t]*k, ans+=k;
}
if(!bll) break;
}
printf("%lld",ans);
}

4514: [Sdoi2016]数字配对的更多相关文章

  1. 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 820  Solved: 345[Submit][Status ...

  2. BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]

    4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...

  3. BZOJ 4514: [Sdoi2016]数字配对

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1606  Solved: 608[Submit][Statu ...

  4. 4514: [Sdoi2016]数字配对 费用流

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4514 思路 EK直接贪心做 <0的时候加上剩余返回 二分图a->b的时候 把b- ...

  5. BZOJ.4514.[SDOI2016]数字配对(费用流SPFA 二分图)

    BZOJ 洛谷 \(Solution\) 很显然的建二分图后跑最大费用流,但有个问题是一个数是只能用一次的,这样二分图两部分都有这个数. 那么就用两倍的.如果\(i\)可以向\(j'\)连边,\(j\ ...

  6. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  7. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

  8. AC日记——[Sdoi2016]数字配对 bzoj 4514

    4514 思路: 很受伤现在,,测了那么多次不过的原因就是因为INF不够大: 解法有两种: 解法1: 把n个点按照质因数个数为奇或偶分为两个点集(很容易就可以想到): 然后,按照题目连边跑最大费用流: ...

  9. 【BZOJ 4514】[Sdoi2016]数字配对 费用流

    利用spfa流的性质,我直接拆两半,正解分奇偶(妙),而且判断是否整除且质数我用的是暴力根号,整洁判断质数个数差一(其他非spfa流怎么做?) #include <cstdio> #inc ...

随机推荐

  1. git相关的简单命令

    初次使用建议看这个ppt:http://www.bootcss.com/p/git-guide/    从现有仓库克隆 这需要用到 git clone 命令.如果你熟悉其他的 VCS 比如 Subve ...

  2. 高并发第十一弹:J.U.C -AQS(AbstractQueuedSynchronizer) 组件:Lock,ReentrantLock,ReentrantReadWriteLock,StampedLock

    既然说到J.U.C 的AQS(AbstractQueuedSynchronizer)   不说 Lock 是不可能的.不过实话来说,一般 JKD8 以后我一般都不用Lock了.毕竟sychronize ...

  3. 使用css实现炫酷的横屏滚动效果

    炫酷的横屏滚动效果css实现 DEMO: https://codepen.io/kobako/pen/BxVLLm 我们对滚动条都不陌生.平时浏览的网页,进度条通常是垂直方向的,内容从上往下排列.但是 ...

  4. .NET异常处理的动作策略(Action Policy)

    SQL Server 2008基于策略的管理,基于策略的管理(Policy Based Management),使DBA们可以制定管理策略,并将这些策略应用到服务器.数据库以及数据环境中的其他对象上去 ...

  5. WCF服务使用(IIS+Http)和(Winform宿主+Tcp)两种方式进行发布

    1.写在前面 刚接触WCF不久,有很多地方知其然不知其所以然.当我在[创建服务->发布服务->使用服务]这一过程出现过许多问题.如客户端找不到服务引用:客户端只在本机环境中才能访问服务,移 ...

  6. javascript代码

    LazyMan 实现LazyMan(什么是LazyMan?请自行google) function _LazyMan(_name) { var _this = this; _this.tasks = [ ...

  7. Vue 2.0 pagination分页组件

    最近写了一个分页组件,效果如下图: f-pagination.js文件 Vue.component('f-pagination',{ template:'<div class="fPa ...

  8. 使用tour_editor.html设置视角和添加热点

    控制初始视角 双击打开vtour文件夹中的tour_editor.html.(请先运行测试服务器,然后在浏览器地址栏中加上tour_editor.html,例如 http://localhost:52 ...

  9. Flutter 控件之 AppBar 和 SliverAppBar

    AppBar 和 SliverAppBar 是纸墨设计中的 App Bar,也就是 Android 中的 Toolbar,关于 Toolbar 的设计指南请参考纸墨设计中 Toolbar 的内容. A ...

  10. git push 提示 Everything up-to-date

    第一次在 Google Code 上弄项目,注册完毕后,尝试增加一个新文件用以测试 Git 是否好好工作.结果在 Push 时却显示 Every up-to-date,检查文件时却发现实际上一个都没更 ...