Language:
Default
Firing
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 8744   Accepted: 2631

Description

You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do some firings. You’re now simply too mad to give response to questions like “Don’t you think it is an even more stupid decision to have signed them?”, yet calm enough to consider the potential profit and loss from firing a good portion of them. While getting rid of an employee will save your wage and bonus expenditure on him, termination of a contract before expiration costs you funds for compensation. If you fire an employee, you also fire all his underlings and the underlings of his underlings and those underlings’ underlings’ underlings… An employee may serve in several departments and his (direct or indirect) underlings in one department may be his boss in another department. Is your firing plan ready now?

Input

The input starts with two integers n (0 < n ≤ 5000) and m (0 ≤ m ≤ 60000) on the same line. Next follows n + m lines. The first n lines of these give the net profit/loss from firing the i-th employee individuallybi (|bi| ≤ 107, 1 ≤ i ≤ n). The remaining m lines each contain two integers i and j (1 ≤ ij ≤ n) meaning the i-th employee has the j-th employee as his direct underling.

Output

Output two integers separated by a single space: the minimum number of employees to fire to achieve the maximum profit, and the maximum profit.

Sample Input

5 5
8
-9
-20
12
-10
1 2
2 5
1 4
3 4
4 5

Sample Output

2 2

Hint

As of the situation described by the sample input, firing employees 4 and 5 will produce a net profit of 2, which is maximum.
 
很基础的最大权闭合图
 
 #include<iostream>
#include<queue>
#include<cstring>
#include<cstdio>
#include<climits>
#define MAXE 65100*2
#define MAXP 5100
#define Max(a,b) a>b?a:b
#define Min(a,b) a<b?a:b
using namespace std;
struct Edge
{
long long int s,t,next;
long long f;
} edge[MAXE];
long long int head[MAXP];
long long int cur[MAXP];
long long int pre[MAXP];
long long int stack[MAXE];
long long int dep[MAXP];
long long int ent;
long long int n,m,s,t,cot;
void add(long long int start,long long int last,long long int f)
{
edge[ent].s=start;
edge[ent].t=last;
edge[ent].f=f;
edge[ent].next=head[start];
head[start]=ent++;
edge[ent].s=last;
edge[ent].t=start;
edge[ent].f=;
edge[ent].next=head[last];
head[last]=ent++;
}
bool bfs(long long int S,long long int T)
{
memset(pre,-,sizeof(pre));
pre[S]=;
queue<long long int>q;
q.push(S);
while(!q.empty())
{
long long int temp=q.front();
q.pop();
for(long long int i=head[temp]; i!=-; i=edge[i].next)
{
long long int temp2=edge[i].t;
if(pre[temp2]==-&&edge[i].f)
{
pre[temp2]=pre[temp]+;
q.push(temp2);
}
}
}
return pre[T]!=-;
}
long long int dinic(long long int start,long long int last)
{
long long int flow=,now;
while(bfs(start,last))
{
long long int top=;
memcpy(cur,head,sizeof(head));
long long int u=start;
while()
{
if(u==last)//如果找到终点结束对中间路径进行处理并计算出该流
{
long long int minn=INT_MAX;
for(long long int i=; i<top; i++)
{
if(minn>edge[stack[i]].f)
{
minn=edge[stack[i]].f;
now=i;
}
}
flow+=minn;
for(long long int i=; i<top; i++)
{
edge[stack[i]].f-=minn;
edge[stack[i]^].f+=minn;
}
top=now;
u=edge[stack[top]].s;
}
for(long long int i=cur[u]; i!=-; cur[u]=i=edge[i].next) //找出从u点出发能到的边
if(edge[i].f&&pre[edge[i].t]==pre[u]+)
break;
if(cur[u]==-)//如果从该点未找到可行边,将该点标记并回溯
{
if(top==)break;
pre[u]=-;
u=edge[stack[--top]].s;
}
else//如果找到了继续运行
{
stack[top++]=cur[u];
u=edge[cur[u]].t;
}
}
}
return flow;
}
void dfs(long long int u)
{
cot++;
dep[u]=;
for(long long int i=head[u];i!=-;i=edge[i].next)
{
long long int v=edge[i].t;
if(!dep[v]&&edge[i].f>)
{
dfs(v);
}
}
}
int main()
{
while(~scanf("%lld%lld",&n,&m))
{
s=;
t=n+;
ent=;
long long int cost,u,v;
long long int ans=;
memset(head,-,sizeof(head));
for(int i=; i<=n; i++)
{
scanf("%lld",&cost);
if(cost>)
{
add(s,i,cost);
ans+=cost;
}
else add(i,t,-cost);
}
for(int i=; i<=m; i++)
{
scanf("%lld%lld",&u,&v);
add(u,v,INT_MAX);
}
memset(dep,,sizeof(dep));
long long int flow=dinic(s,t);
cot=;
dfs(s);
printf("%lld ",cot-);
printf("%lld\n",ans-flow);
}
return ;
}

poj 2987 最大权闭合图的更多相关文章

  1. poj 2987(最大权闭合图+割边最少)

    题目链接:http://poj.org/problem?id=2987 思路:标准的最大权闭合图,构图:从源点s向每个正收益点连边,容量为收益:从每个负收益点向汇点t连边,容量为收益的相反数:对于i是 ...

  2. hdu 2987最大权闭合图模板类型题

    /* 最大权闭合图模板类型的题,考验对知识概念的理解. 题意:如今要辞退一部分员工.辞退每个员工能够的到一部分利益(能够是负的),而且辞退员工,必须辞退他的下属.求最大利益和辞退的最小人数. 最大权闭 ...

  3. poj 2987 Firing 最大权闭合图

    题目链接:http://poj.org/problem?id=2987 You’ve finally got mad at “the world’s most stupid” employees of ...

  4. POJ 2987 Firing 网络流 最大权闭合图

    http://poj.org/problem?id=2987 https://blog.csdn.net/u014686462/article/details/48533253 给一个闭合图,要求输出 ...

  5. POJ 2987 Firing(最大权闭合图)

    [题目链接] http://poj.org/problem?id=2987 [题目大意] 为了使得公司效率最高,因此需要进行裁员, 裁去不同的人员有不同的效率提升效果,当然也有可能是负的效果, 如果裁 ...

  6. POJ 2987:Firing(最大权闭合图)

    http://poj.org/problem?id=2987 题意:有公司要裁员,每裁一个人可以得到收益(有正有负),而且如果裁掉的这个人有党羽的话,必须将这个人的所有党羽都裁除,问最少的裁员人数是多 ...

  7. POJ 2987 Firing【最大权闭合图-最小割】

    题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...

  8. POJ 2987 Firing(最大流最小割の最大权闭合图)

    Description You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do ...

  9. POJ 3155 Hard Life 最大密度子图 最大权闭合图 网络流 二分

    http://poj.org/problem?id=3155 最大密度子图和最大权闭合图性质很相近(大概可以这么说吧),一个是取最多的边一个是取最多有正贡献的点,而且都是有选一种必须选另一种的限制,一 ...

随机推荐

  1. 【IOI2000】邮局设置问题

    现在连基础DP都要看题解和代码才能写出来了,怎么办嘛QAQ 原题: 一些村庄建在一条笔直的高速公路边上,我们用一条坐标轴来描述这条公路,每个村庄的坐标都是整数,没有两个村庄的坐标相同.两个村庄的距离定 ...

  2. github 如何合并不同分支

    From: http://stackoverflow.com/questions/1123344/merging-between-forks-in-github 1. 添加remote origina ...

  3. colorPrimaryDark无法改变状态栏颜色

    设置完colorPrimaryDark后,这个颜色是改变状态栏的颜色的, colorPrimary是改变标题栏背景色的 发现状态栏一直是灰色. 然后在布局文件中 AndroidMainifest.xm ...

  4. Network Address Translation(转载)

    Network Address Translation  来源:http://alexanderlaw.blog.hexun.com/9791596_d.html       地址转换用来改变源/目的 ...

  5. knockout 第一个实例visible

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  6. python学习-day20、装饰器【图片缺失可看】印象笔记博客备份

    前言: 装饰器用于装饰某些函数或者方法,或者类.可以在函数执行之前或者执行之后,执行一些自定义的操作. 1.定义:装饰器就是一个函数,为新定义的函数.把原函数嵌套到新函数里面.以后就可以在执行新函数的 ...

  7. 2 、Linux基本命令-ls-pwd-cd-date-hwclock

    Linux基本命令: 1.ls-查看目录下的文档 语法: ls 目录 注: .当前目录  ..上级目录 如:ls /etc/ 相关参数: -l  显示详细信息 ls /etc/ -l -a 显示隐藏的 ...

  8. MyEclipse转换Eclipse项目无法启动问题(转)

    将myeclipse中开发的动态web项目直接引入到eclipse中继续开发,启动tomcat时会发出警告,更重的问题是你想启动的项目不知哪里去了,没有读取到配置文件:       警告: [SetP ...

  9. RNG vs EDG | SKT vs KTB [20160826]

    G1 RNG:丽桑卓,古拉加斯,强行开团流. EDG:崔斯特,普朗克,伊莉斯游走,全球支援流,小规模团战能以多打少. G2 RNG:塔莉垭,纳尔,烬. EDG:雷克塞,艾克,劫,冲击后排. G3 RN ...

  10. 如何调试IIS错误信息

    原文链接: http://blogs.msdn.com/b/tess/archive/2009/03/20/debugging-a-net-crash-with-rules-in-debug-diag ...