起源:自动编码器

单自动编码器,充其量也就是个强化补丁版PCA,只用一次好不过瘾。

于是Bengio等人在2007年的  Greedy Layer-Wise Training of Deep Networks 中,

仿照stacked RBM构成的DBN,提出Stacked AutoEncoder,为非监督学习在深度网络的应用又添了猛将。

这里就不得不提  “逐层初始化”(Layer-wise Pre-training),目的是通过逐层非监督学习的预训练,

来初始化深度网络的参数,替代传统的随机小值方法。预训练完毕后,利用训练参数,再进行监督学习训练。

Part I  原理

非监督学习网络训练方式和监督学习网络的方式是相反的。

在监督学习网络当中,各个Layer的参数W受制于输出层的误差函数,因而Layeri参数的梯度依赖于Layeri+1的梯度,形成了"一次迭代-更新全网络"反向传播。

但是在非监督学习中,各个Encoder的参数W只受制于当前层的输入,因而可以训练完Encoderi,把参数转给Layeri,利用优势参数传播到Layeri+1,再开始训练。

形成"全部迭代-更新单层"的新训练方式。这样,Layeri+1效益非常高,因为它吸收的是Layeri完全训练奉献出的精华Input。

Part II  代码与实现

主要参考  http://deeplearning.net/tutorial/SdA.html

栈式机在构造函数中,构造出各个Layer、Encoder,并且存起来。

Theano在构建栈式机中,易错点是Encoder、Layer的参数转移。

我们知道,Python的列表有深浅拷贝一说。Theano所有被shared标记的变量都是浅拷贝。

因而首先有这样的错误写法:

def __init__(self,rng,input,n_in,n_out,layerSize):
......
for i in xrange(len(layerSize)):
......
da.W=hidenlayer.W
da.bout=hidenlayer.b

然后你在外部为da做grad求梯度的时候就报错了,提示说params和cost函数不符合。

这是因为cost函数的Tensor表达式在写cost函数时就确定了,这时候da这个对象刚好构造完,因而Tensor表达式中的da.W是构造随机值。

然后我们在da构造完了之后,手贱把da.W指向的内存改变了(浅拷贝相当于引用),这样算出的grad根本就不对。

其实这样写反了,又改成了这样

def __init__(self,rng,input,n_in,n_out,layerSize):
......
for i in xrange(len(layerSize)):
......
hidenlayer.W=da.W
hidenlayer.b=da.bout

好吧,这样不会报错了,而且每训练一个Encoder,用get_value查看Layer的值确实改变了。但是,训练Encoderi+1的时候,怎么感觉没效果?

其实是真的没效果,因为Layeri的参数根本没有传播到Layeri+1去。

Theano采用Python、C双内存区设计,在C代码中训练完Encoderi时,参数并没有转到Layeri中。但是我们明明建立了浅拷贝啊?

原来updates函数在C内存区中,根本没有觉察到浅拷贝关系,因为它在Python内存区中。

正确做法是像教程这样,在da构造时建立浅拷贝关系,当编译成C代码之后,所有Python对象要在C内存区重新构造,自然就在C内存区触发了浅拷贝。

 da=dA(rng,layerInput,InputSize,self.layerSize[i],hidenlayer.W,hidenlayer.b)

或者训练完Encoderi,强制把Encoderi参数注入到C内存区的Layeri里。

updateModel=function(inputs=[],outputs=[],updates=[(....)],
updateModel()

Theano的写法风格近似于函数式语言,对象、函数中全是数学模型。一旦构造完了之后,就无法显式赋值。

所以,在Python非构造函数里为对象赋值是愚蠢的,效果仅限于Python内存区。但是大部分计算都在C内存区,所以需要updates手动把值打进C内存区。

updates是沟通两区的桥梁,一旦发现Python内存区中有建立浅拷贝关系,就会把C内存区中值更新到Python内存区。(有利于Python中保存参数)

但是绝对不会自动把Python内存区值,更新到C内存区当中。(这点必须小心)

这种做法可以扩展到,监督训练完之后,参数的保存与导入。

栈式自动编码器(Stacked AutoEncoder)的更多相关文章

  1. 4. Stacked AutoEncoder(堆栈自动编码器)

    1. AutoEncoder介绍 2. Applications of AutoEncoder in NLP 3. Recursive Autoencoder(递归自动编码器) 4. Stacked ...

  2. DDos攻击,使用深度学习中 栈式自编码的算法

    转自:http://www.airghc.top/2016/11/10/Dection-DDos/ 最近研究了一篇论文,关于检测DDos攻击,使用了深度学习中 栈式自编码的算法,现在简要介绍一下内容论 ...

  3. matlab 实现 stacked Autoencoder 解决图像分类问题

    Train Stacked Autoencoders for Image Classification 1. 加载数据到内存 [train_x, train_y] = digitTrainCellAr ...

  4. 基于NodeJS的全栈式开发

    前言 为了解决传统Web开发模式带来的各种问题,我们进行了许多尝试,但由于前/后端的物理鸿沟,尝试的方案都大同小异.痛定思痛,今天我们重新思考了“前后端”的定义,引入前端同学都熟悉的 NodeJS,试 ...

  5. (转)也谈基于NodeJS的全栈式开发(基于NodeJS的前后端分离)

    原文链接:http://ued.taobao.org/blog/2014/04/full-stack-development-with-nodejs/ 随着不同终端(pad/mobile/pc)的兴起 ...

  6. 全栈式JavaScript

    如今,在创建一个Web应用的过程中,你需要做出许多架构方面的决策.当然,你会希望做的每一个决定都是正确的:你想要使用能够快速开发的技术,支持持续的迭代,最高的工作效率,迅速,健壮性强.你想要精益求精并 ...

  7. 全栈式框架的选择:MEAN or MEANS?

    说明:个人博客地址为edwardesire.com,欢迎前来品尝.本博客作为备份和引流 这两个月一直在进行sails后端开发,其中遇到的问题不断.放在研究用户访问控制矸例程上的时间太多,最后也没用弄出 ...

  8. UFLDL教程(六)之栈式自编码器

    第0步:初始化一些参数和常数   第1步:利用训练样本集训练第一个稀疏编码器   第2步:利用训练样本集训练第二个稀疏编码器   第3步:利用第二个稀疏编码器提取到的特征训练softmax回归模型   ...

  9. 也谈基于NodeJS的全栈式开发(基于NodeJS的前后端分离)

    前言 为了解决传统Web开发模式带来的各种问题,我们进行了许多尝试,但由于前/后端的物理鸿沟,尝试的方案都大同小异.痛定思痛,今天我们重新思考了“前后端”的定义,引入前端同学都熟悉的NodeJS,试图 ...

随机推荐

  1. PHP之MVC项目实战(三)

    本文主要包括以下内容 标准错误错误处理 http操作 PDO 文件操作 标准错误错误处理 PHP在语法层面上发生的错误 两个过程: 触发阶段(发生一个错误) 处理阶段(如何处理该错误) 触发阶段 系统 ...

  2. 与你相遇好幸运,Sails.js自定义responses

    在 /api/responses/ 新建文件 >serviceDBError.js 自定义的数据库错误 >serviceError.js  自定义的数据错误 >serviceSucc ...

  3. 【转载】 Python动态生成变量

    用Python循环创建多个变量, 如创建 a1=   .a2=   .a3=   .a4=   .a5=    或  self.a1=    .self.a2=   . self.a3= 一. 可以通 ...

  4. html5 Canvas绘制图形入门详解

    html5,这个应该就不需要多作介绍了,只要是开发人员应该都不会陌生.html5是「新兴」的网页技术标准,目前,除IE8及其以下版本的IE浏览器之外,几乎所有主流浏览器(FireFox.Chrome. ...

  5. PostgreSQL的时间/日期函数使用

    PostgreSQL的常用时间函数使用整理如下: 一.获取系统时间函数 1.1 获取当前完整时间 select now(); david=# select now(); now ----------- ...

  6. wordpress源码解析-目录结构-文件调用关系(1)

    学习开源代码,是一种很快的提升自己的学习方法.Wordpress作为一个开源的博客系统,非常优秀,应用广泛,使用起来简单方便,具有丰富的主题和插件,可以按照自己的需求来任意的进行修改.所以就从word ...

  7. WCF学习笔记之消息交换模式

    在WCF通信中,有三种消息交换模式,OneWay(单向模式), Request/Reponse(请求回复模式), Duplex(双工通信模式)这三种通信方式.下面对这三种消息交换模式进行讲解. 1. ...

  8. UML- 模型图介绍

    第一类 用例图 第二类 静态图 类图  对象图  包图第三类 行为图 状态图  活动图第四类 交互图 序列图 协助图第五类 实现图  构件图 部署图 1 用例图:从用户角度描述系统功能,以及每个系统功 ...

  9. 【译】安装Sonar要求

    本文仅为本人看sonar官方文档时,因其为英文,故简单整理翻译[英语不好,见谅!] http://docs.sonarqube.org/display/SONAR/Requirements   目录 ...

  10. spfa求最长路

    http://poj.org/problem?id=1932 spfa求最长路,判断dist[n] > 0,需要注意的是有正环存在,如果有环存在,那么就要判断这个环上的某一点是否能够到达n点,如 ...