Hong Kong Regional Online Preliminary 2016 C. Classrooms
Classrooms
The new semester is about to begin, and finding classrooms for orientation activities is always a headache.
There are $k$ classrooms on campus and $n$ proposed activities that need to be assigned a venue. Every proposed activity has specfic starting time $s_i$ and ending time $f_i$. Any such an activity should take place at one of the classrooms. Any of the $k$ classrooms is big enough to hold any of the proposed activities, and each classroom can hold at most one activity at any time. No two proposed activities can take place at the same classroom at the same time. Even if two proposed activities overlap momentarily (the ending time of one activity equals the starting time another activity), they cannot be assigned to the same classroom.
There are so many proposed activities that there may not be enough classrooms to hold all the activities. It is desirable to have as many activities as possible. At most how many proposed activities can be assigned to the classrooms?
Input
The first line contains two positive integers $n$ and $k$ ($k \le n \le 200000$), representing the number of proposed activities and number of classrooms, respectively.
The following $n$ lines each contains two positive integers: the $i$-th line among these $n$ lines contains $s_i$ and $f_i$ ($1 \le s_i \le f_i \le 10^9$), indicating the starting time and ending time of proposed activity $i$.
Output
Output an integer indicating the maximum number proposed activities that can be scheduled.
Sample Input 1
4 2
1 4
2 9
4 7
5 8
Sample Output 1
3
Solution
从前在《挑战程序设计竞赛》看到过一个结论:
在$n$个区间$[l_1, r_1],\cdots, [l_n, r_n]$中选择最多的两两不相交的区间, 可按如下贪心策略:
每次都选当前可选的区间中结束时间最早的那个区间.
其实这是个求DAG上最长链的问题.
上述情形恰好是本题的一个特例 ($k=1$), 所以我第一个想法是:
将所有区间按右端点从大到小排序.
按此顺序将区间放到一个链表 (std::list) 里, 每次按上述贪心策略, 选择一个最长链, 并将这些区间从链表中删除.
可惜这做法是错的, 而且复杂度是$O(n^2)$.
然后就不知道怎么做了. 我做题有个不好的习惯: 每次WA后, 不会去动手出几组数据check以下, 验证自己想法的正确性.
其实对于我的做法反例很容易举出来:
后来在某博客上看到了正确的做法:
基本的想法也是对一个贪心策略的模拟:
仍然先将区间按右端点从小到大排序, 从左到右遍历这些区间, 同时用 std::multiset<int> 维护每个房间内当前正在进行那个活动的结束时间 (亦即区间右端点). 对于当前考虑的区间 $[l_i, r_i]$, 在multiset中查询小于 (早于) $l_i$的最大的某个右端点, $r^$. 若$r^$存在就将其更新为$r_i$, 否则若multiset的size()$<k$就将$r_i$插入multiset.
Implementation
考虑到std::multiset<>只支持lower_bound()和upper_bound, 为了方便上述查询, 将区间右端点的相反数 (负值) 插入multiset中.
#include <bits/stdc++.h>
using namespace std;
const int N{1<<18};
struct X{
int s, t;
void read(){
scanf("%d%d", &s, &t);
}
bool operator<(const X &rhs)const{
return t<rhs.t;
}
void out(){
cout<<s<<' '<<t<<endl;
}
}a[N];
multiset<int> mst;
int main(){
int n, k;
cin>>n>>k;
for(int i=0; i<n; i++)
a[i].read();
sort(a, a+n);
int res=0;
for(int i=0; i<n; i++){
// a[i].out();
auto it=mst.upper_bound(-a[i].s);
if(it==mst.end()){
if(mst.size()<k){
// puts("ADD1");
res++;
mst.insert(-a[i].t);
}
}
else{
res++;
// puts("ADD2");
mst.erase(it);
mst.insert(-a[i].t);
}
}
cout<<res<<endl;
return 0;
}
当然, 取相反数也可以实现上述查询, 这时这要查询low_bound(r[i])的前趋.
#include <bits/stdc++.h>
using namespace std;
const int N{1<<18};
struct X{
int s, t;
void read(){
scanf("%d%d", &s, &t);
}
bool operator<(const X &rhs)const{
return t<rhs.t;
}
void out(){
cout<<s<<' '<<t<<endl;
}
}a[N];
multiset<int> mst;
int main(){
int n, k;
cin>>n>>k;
for(int i=0; i<n; i++)
a[i].read();
sort(a, a+n);
int res=0;
for(int i=0; i<n; i++){
// a[i].out();
auto it=mst.lower_bound(a[i].s);
if(it==mst.begin()){
if(mst.size()<k){
// puts("ADD1");
res++;
mst.insert(a[i].t);
}
}
else{
res++;
--it;
// puts("ADD2");
mst.erase(it);
mst.insert(a[i].t);
}
}
cout<<res<<endl;
return 0;
}
总结
这个贪心策略的正确性还是比较容易证明的.
首先将区间按活动的结束时间从早到晚排序, 按这样的顺序出个安排活动能够保证当对于任意两个相互冲突的两个活动, 我们优先选择结束时间较早的活动, 这显然比选结束时间晚的要更优.
Hong Kong Regional Online Preliminary 2016 C. Classrooms的更多相关文章
- Asia Hong Kong Regional Contest 2016
A. Colourful Graph 可以在$2n$步之内实现交换任意两个点的颜色,然后就可以构造出方案. #include <bits/stdc++.h> using namespace ...
- 2019-2020 ICPC Asia Hong Kong Regional Contest
题解: https://files.cnblogs.com/files/clrs97/19HKEditorial-V1.zip Code:(Part) A. Axis of Symmetry #inc ...
- Asia Hong Kong Regional Contest 2019
A. Axis of Symmetry B. Binary Tree n 的奇偶性决定胜负. C. Constructing Ranches 路径上点权之和大于,极大值两倍,这是路径上点能拼出多边形的 ...
- 2019-2020 ICPC Asia Hong Kong Regional Contest J. Junior Mathematician 题解(数位dp)
题目链接 题目大意 要你在[l,r]中找到有多少个数满足\(x\equiv f(x)(mod\; m)\) \(f(x)=\sum_{i=1}^{k-1} \sum_{j=i+1}^{k}d(x,i) ...
- 每日英语:Google Scraps Plan to Build Hong Kong Data Center
Internet giant Google Inc. has scrapped a plan to build its own data center in Hong Kong and will in ...
- 每日英语:Hong Kong Lifestyle Strains City's Resources
Hong Kong's rapacious consumption and waste production is straining its natural resources and could ...
- Neon Lights in Hong Kong【香港霓虹灯】
Neon Lights in Hong Kong Neon is to Hong Kong as red phone booths are to London and fog is to San Fr ...
- URAL 1969. Hong Kong Tram
有一个trick就是没想到,枚举第二段时间后,要检测该火车能否继续跑一圈来判断,不能先检测前半圈能不能跑加进去后在检测后半段: // **** 部分不能放在那个位置: 最近代码导致的错误总是找不出,贴 ...
- 2016-2017 ACM-ICPC East Central North America Regional Contest (ECNA 2016) F 区间dp
Problem F Removal GameBobby Roberts is totally bored in his algorithms class, so he’s developed a li ...
随机推荐
- express:webpack dev-server开发中如何调用后端服务器的接口?
开发环境: 前端:webpack + vue + vue-resource,基于如下模板创建的开发环境: https://github.com/vuejs-templates/webpack ...
- JavaScript:关于事件处理程序何时可以直接访问元素的属性
指定在元素的的事件处理程序中指定 <input type="button" value="click me" onclick="alert(th ...
- CentOs下jdk的安装
jdk的安装是咱搞java的基本功了,在window上配置了没上百次也有几十次了,今天换个环境,需要在linux系统上安装,而服务器版本的CentOs是纯命令行的, 因此也给配置jdk增加了不少难度, ...
- 各种主流 SQLServer 迁移到 MySQL 工具对比
我之所以会写这篇对比文章,是因为公司新产品研发真实经历过这个痛苦过程(传统基于SQL Server开发的C/S产品转为MySQL云产品).首次需要数据转换是测试环节,当时为了快速验证新研发 ...
- List<T>与Dictionary<string,T>频繁检索的性能差距
一直对LINQ简洁高效的语法青睐有加,对于经常和资料库,SQL语法打交道的C#开发者来说,LINQ无疑是一个非常不错的选择,当要在List<T>(T为一个普通对象)集合中查找满足某些条件的 ...
- 安装.NET Framework后程序无法启动的错误处理
最近发现一直在使用的Database.NET软件无法正常使用了,表现为当尝试进行Sql Server的连接创建时,直接报错 在事件查看器具体错误信息为: 日志名称: Applicat ...
- factor graph model
主实验 文慧:用户,商品,评分,review,ranking. 数据集:数据规模,论文源代码
- python列表下标用法
python中的列表下标实在太灵活了,要根据表象来分析它的内在机理,这样用起来才能溜.下标可以为负数有利有弊,好处是使用起来更简便,坏处是当我下表越界了我也不知道反倒发生奇奇怪怪的错误. print ...
- 如何在UIimageview里显示一张图片里的某一部分
首先,获取想要显示的部分的大小及位置 CGRect rect: 然后,将此部分从图片中剪切出来 CGImageRef imageRef=CGImageCreateWithImageInRect([im ...
- C#中快速释放内存,任务管理器可查证
先close() 再dispose() 之后=null 最后GC.Collect() 如: ms.Close();//关闭流,并释放与之相关的资源 ms.Dispose();//如果是流的话,默认只会 ...