最大似然估计 (MLE) 最大后验概率(MAP)
1) 最大似然估计 MLE
给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”。 例如,我们知道这个分布是正态分布,但是不知道均值和方差;或者是二项分布,但是不知道均值。 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数。MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大:
其中就是似然函数,表示在参数
下出现观测数据的概率。我们假设每个观测数据是独立的,那么有
为了求导方便,一般对目标取log。 所以最优化对似然函数等同于最优化对数似然函数:
举一个抛硬币的简单例子。 现在有一个正反面不是很匀称的硬币,如果正面朝上记为H,方面朝上记为T,抛10次的结果如下:
求这个硬币正面朝上的概率有多大?
很显然这个概率是0.2。现在我们用MLE的思想去求解它。我们知道每次抛硬币都是一次二项分布,设正面朝上的概率是,那么似然函数为:
x=1表示正面朝上,x=0表示方面朝上。那么有:
求导:
令导数为0,很容易得到:
也就是0.2 。
2) 最大后验概率 MAP
以上MLE求的是找出一组能够使似然函数最大的参数,即。 现在问题稍微复杂一点点,假如这个参数
有一个先验概率呢?比如说,在上面抛硬币的例子,假如我们的经验告诉我们,硬币一般都是匀称的,也就是
=0.5的可能性最大,
=0.2的可能性比较小,那么参数该怎么估计呢?这就是MAP要考虑的问题。 MAP优化的是一个后验概率,即给定了观测值后使
概率最大:
把上式根据贝叶斯公式展开:
我们可以看出第一项就是似然函数,第二项
就是参数的先验知识。取log之后就是:
回到刚才的抛硬币例子,假设参数有一个先验估计,它服从Beta分布,即:
而每次抛硬币任然服从二项分布:
那么,目标函数的导数为:
求导的第一项已经在上面MLE中给出了,第二项为:
令导数为0,求解为:
其中,表示正面朝上的次数。这里看以看出,MLE与MAP的不同之处在于,MAP的结果多了一些先验分布的参数。
补充知识: Beta分布
Beat分布是一种常见的先验分布,它形状由两个参数控制,定义域为[0,1]
Beta分布的最大值是x等于的时候:
所以在抛硬币中,如果先验知识是说硬币是匀称的,那么就让。 但是很显然即使它们相等,它两的值也对最终结果很有影响。它两的值越大,表示偏离匀称的可能性越小:
原创博客,转载请注明出处 Leavingseason http://www.cnblogs.com/sylvanas2012/p/5058065.html
最大似然估计 (MLE) 最大后验概率(MAP)的更多相关文章
- 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解
目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...
- 最大似然估计和最大后验概率MAP
最大似然估计是一种奇妙的东西,我觉得发明这种估计的人特别才华.如果是我,觉得很难凭空想到这样做. 极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点.频率派认为,参数是客观存在的,只是未知而矣. ...
- 4.机器学习——统计学习三要素与最大似然估计、最大后验概率估计及L1、L2正则化
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计” ...
- 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- 最大似然估计(MLE)与最小二乘估计(LSE)的区别
最大似然估计与最小二乘估计的区别 标签(空格分隔): 概率论与数理统计 最小二乘估计 对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小. ...
- Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- 补充资料——自己实现极大似然估计(最大似然估计)MLE
这篇文章给了我一个启发,我们可以自己用已知分布的密度函数进行组合,然后构建一个新的密度函数啦,然后用极大似然估计MLE进行估计. 代码和结果演示 代码: #取出MASS包这中的数据 data(geys ...
- 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/ ...
- 最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用
最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道 ...
随机推荐
- java设计优化--单例模式
单例模式是一种对象创建模式,确保系统中一个类只有一个实例. 在java语言中,这样做有两大好处: 1.对于频繁使用的对象,可以省略创建对象所话费的时间: 2.由于new操作的次数减少,对于系统内存的使 ...
- KVM 内存虚拟化
内存虚拟化的概念 除了 CPU 虚拟化,另一个关键是内存虚拟化,通过内存虚拟化共享物理系统内存,动态分配给虚拟机.虚拟机的内存虚拟化很象现在的操作系统支持的虚拟内存方式,应用程序看到邻近的内存 ...
- applicationContext.xml和dispatcher-servlet.xml的区别
在SpringMVC项目中我们一般会引入applicationContext.xml和dispatcher-servlet.xml两个配置文件,这两个配置文件具体的区别是什么呢? Spring 官方文 ...
- [Google Guava]学习--新集合类型Multimap
每个有经验的Java程序员都在某处实现过Map<K, List<V>>或Map<K, Set<V>>,并且要忍受这个结构的笨拙. 假如目前有个需求是给两 ...
- 在Windows .NET平台下使用Memcached
网上关于Memcached的文章很多,但据我观察,大多是互相转载或者抄袭的,千篇一律.有些则是直接整理的一些超链接然后贴出来.那些超链接笔者大概都进去看了,其实关于Memcached的中文的技术文章, ...
- Edge Linking
因为噪声的存在, 检测出来的edge points有很多都是不相邻的. 所以边缘检测算法通常都有最后的连接步骤: 将属于同一edge的不相邻点连接起来(TODO, 是用一条路径将它们连通, 把路径中的 ...
- mysql-模拟全连接处理
方案:通过union连接查询出所有需要的特殊标签,然后在通过left join与union中的结果集做多表比较. sql select t.`code`,a.`count` as count_a,b. ...
- 回到顶端js实现
function goTop(){ var _btn = document.getElementById("goTop"); if (document.documentElemen ...
- Linux命令:修改文件权限命令chmod、chgrp、chown的区别
chmod是更改文件的权限 chown是改改文件的属主与属组 chgrp只是更改文件的属组. (1)chmod是修改文件/目录的权限.可以有文字修改和数字修改. #chmod 777 /home/be ...
- [vijos1982][NOIP2015]子串
Description 有两个仅包含小写英文字母的字符串和.现在要从字符串中取出个互不重叠的非空子串,然后把这个子串按照其在字符串中出现的顺序依次连接起来得到一个新的字符串,请问有多少种方案可以使得这 ...