很久以前就见过的。。。最基本的概率DP。。。
除法配合位运算可以很容易的判断下一场要和谁比。    from——Dinic算法

                        Football
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2499   Accepted: 1258

Description

Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

Input

The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

Output

The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

Sample Input

2
0.0 0.1 0.2 0.3
0.9 0.0 0.4 0.5
0.8 0.6 0.0 0.6
0.7 0.5 0.4 0.0
-1

Sample Output

2

Hint

In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

P(2 wins)  P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
p21p34p23 + p21p43p24
= 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

Source

Stanford Local 2006

 #include <iostream>
#include <cstdio>
#include <cstring> using namespace std; int n,N;
double win[][];
double dp[][]; int main()
{
while(scanf("%d",&n)!=EOF&&n!=-)
{
N=<<n;
for(int i=;i<N;i++) for(int j=;j<N;j++) scanf("%lf",&win[i][j]);
memset(dp,,sizeof(dp));
for(int i=;i<N;i++) dp[i][]=;
for(int k=;k<=n;k++)
{
int B=<<(k-);
for(int i=;i<N;i++)
{
int temp=i/B;
for(int j=;j<N;j++)
{
if((temp^)==(j/B))
dp[i][k]+=dp[i][k-]*dp[j][k-]*win[i][j];
}
}
}
int pos=;
for(int i=;i<N;i++)
{
if(dp[i][n]>dp[pos][n]) pos=i;
}
printf("%d\n",pos+);
} return ;
}

POJ 3071 Football的更多相关文章

  1. poj 3071 Football(概率dp)

    id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...

  2. poj 3071 Football <DP>

    链接:http://poj.org/problem?id=3071 题意: 有 2^n 支足球队,编号 1~2^n,现在给出每支球队打败其他球队的概率,问哪只球队取得冠军的概率最大? 思路: 设dp[ ...

  3. POJ 3071 Football:概率dp

    题目链接:http://poj.org/problem?id=3071 题意: 给定n,有2^n支队伍参加足球赛. 给你所有的p[i][j],表示队伍i打败队伍j的概率. 淘汰赛制.第一轮(1,2)两 ...

  4. POJ 3071 Football 【概率DP】

    Football Football Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3734   Accepted: 1908 ...

  5. poj 3071 Football (概率DP水题)

    G - Football Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  6. poj 3071 Football(线段树+概率)

    Football Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2801   Accepted: 1428 Descript ...

  7. POJ 3071 Football(概率DP)

    题目链接 不1Y都对不住看过那么多年的球.dp[i][j]表示i队进入第j轮的概率,此题用0-1<<n表示非常方便. #include <cstdio> #include &l ...

  8. POJ 3071 Football (概率DP)

    概率dp的典型题.用dp[j][i]表示第j个队第i场赢的概率.那么这场要赢就必须前一场赢了而且这一场战胜了可能的对手.这些都好想,关键是怎么找出当前要算的队伍的所有可能的竞争对手?这个用异或来算,从 ...

  9. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

随机推荐

  1. Objective-C 谈谈深浅拷贝,copy和mutable copy都不是完全拷贝

    (一)字符串中的指针赋值,copy和mutablecopy NSString和NSString (1)指针赋值 肯定指向同一个字符串地址. (2)copy(和直接指向一样) NSString *str ...

  2. java循环遍历map

    import java.util.HashMap; import java.util.Iterator; import java.util.Map; public class MapTest { pu ...

  3. Mac配置一些开发环境(随时补充)

    Mac安装mysql并启动 brew install mysql mysql.server start /usr/local/Cellar/mysql/5.6.10/support-files/mys ...

  4. Linux tcpdump 命令详解

    简介用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具. tcpdump可以将网络中传送的数据包的& ...

  5. Python 培训之正则表达式

    re 模块 re.math 从头匹配 re.search 结构: re.math(r'^c',a)   不符合返回None 原字符: . 任意字符 [ ] 或者 [A-Z,a-z,b] \d 数字 \ ...

  6. python 模拟登陆,请求包含cookie信息

    需求: 1.通过GET方法,访问URL地址一,传入cookie参数 2.根据地址一返回的uuid,通过POST方法,传入cooki参数 实现思路: 1.理解http的GET和POST差别 (网上有很多 ...

  7. Git / 程序员需要知道的12个Git高级命令

    众所周知,Git目前已经是分布式版本控制领域的翘楚,围绕着Git形成了完整的生态圈.学习Git,首先当然是学习Git的基本工作流.相比于SVN等传统版本控制系统来说,Git是专为分布式版本控制而生的强 ...

  8. android语音识别和合成第三方 .

    讯飞语音云 http://open.voicecloud.cn/index.php 目前支持6大类型的SDK下载,包括Android. iPhone平台移动应用的接入,Windows.Linux平台P ...

  9. Docker create image

    Dockerfile FROM java:8 MAINTAINER dudu ADD springts_1-0.0.1-SNAPSHOT.jar app.jar EXPOSE 8080 ENTRYPO ...

  10. Java——包的概念及使用

    package是在使用多个类或接口时,为了避免名称重复而采用的一种措施,直接在程序中加入package关键字即可 编译语法: javac -d . HelloWord.java -d:表示生成目录,生 ...