Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

Description

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B≤ NA ≠ B), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

Output

* Line 1: A single integer representing the number of cows whose ranks can be determined
 

Sample Input

5 5
4 3
4 2
3 2
1 2
2 5

Sample Output

2
/*/
题意:
有n只牛,两两比较,强的在前,鶸的在后。
问进行m轮比较后,能够知道多少只牛具体的排名。 用Floyd算法去判断n只牛相互的关系,如果某一只牛和另外n-1只牛都建成了关系,就说明这只牛已经嫩排除顺序了。 AC代码:
/*/

#include"algorithm"
#include"iostream"
#include"cstring"
#include"cstdlib"
#include"cstdio"
#include"string"
#include"vector"
#include"queue"
#include"cmath"
using namespace std;
typedef long long LL ;
#define memset(x,y) memset(x,y,sizeof(x))
#define memcpy(x,y) memcpy(x,y,sizeof(x))
#define FK(x) cout<<"["<<x<<"]\n" int cow[105][105]; void Floyd(int n) {
for(int k=1; k<=n; k++) {
for(int i=1; i<=n; i++) {
for(int j=1; j<=n; j++) {
cow[i][j]=cow[i][j]||(cow[i][k]&&cow[k][j]); //如果两头牛本身关系已经确定或者两头牛和某一头牛同时形成顺序关系,这两头牛的关系就被了确定。
// cout<<"["<<cow[i][j]<<"]";
}
// puts("");
}
// puts("");
}
} int main() {
int n,m,w,l,num,ans;
while(~scanf("%d%d",&n,&m)) {
memset(cow,0);
for(int i=0; i<m; i++) {
scanf("%d%d",&w,&l);
cow[w][l]=1;
}
Floyd(n);
ans=0;
for(int i=1; i<=n; i++) {
num=0;
for(int j=1; j<=n; j++) {
if(cow[i][j]||cow[j][i])num++;//如果这头牛和其他牛的关系被确定就计数 。
}
if(num==n-1)ans++;//如果该牛和其他所有的牛关系都确定了,这头牛的位置就已经找到了。
}
printf("%d\n",ans);
}
return 0;
}

  

ACM: POJ 3660 Cow Contest - Floyd算法的更多相关文章

  1. POJ 3660 Cow Contest (Floyd)

    题目链接:http://poj.org/problem?id=3660 题意是给你n头牛,给你m条关系,每条关系是a牛比b牛厉害,问可以确定多少头牛的排名. 要是a比b厉害,a到b上就建一条有向边.. ...

  2. POJ 3660 Cow Contest / HUST 1037 Cow Contest / HRBUST 1018 Cow Contest(图论,传递闭包)

    POJ 3660 Cow Contest / HUST 1037 Cow Contest / HRBUST 1018 Cow Contest(图论,传递闭包) Description N (1 ≤ N ...

  3. POJ 3660 Cow Contest 传递闭包+Floyd

    原题链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  4. POJ 3660 Cow Contest

    题目链接:http://poj.org/problem?id=3660 Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  5. POJ 3660 Cow Contest (floyd求联通关系)

    Cow Contest 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/H Description N (1 ≤ N ≤ 100) ...

  6. POJ 3660—— Cow Contest——————【Floyd传递闭包】

    Cow Contest Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit  ...

  7. POJ 3660 Cow Contest(传递闭包floyed算法)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5989   Accepted: 3234 Descr ...

  8. (中等) POJ 3660 Cow Contest,Floyd。

    Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming con ...

  9. POJ 3660 Cow Contest(Floyd求传递闭包(可达矩阵))

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16341   Accepted: 9146 Desc ...

随机推荐

  1. Visual Studio 推荐插件--高量,变量高量,语法高亮

    1  WordLight for 2008 下载网址:http://visualstudiogallery.msdn.microsoft.com/ad686131-47d4-4c13-ada2-5b1 ...

  2. 【JAVA解析XML文件实现CRUD操作】

    一.简介. 1.xml解析技术有两种:dom和sax 2.dom:Document Object Model,即文档对象模型,是W3C组织推荐的解析XML的一种方式. sax:Simple API f ...

  3. 莫队算法 2038: [2009国家集训队]小Z的袜子(hose)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 ...

  4. 华为Mate8 NFC 时好时坏,怎么解决呢?

    拿起手机朝桌子上磕几下,nfc就好用了.这是花粉总结的,我也试过,很灵.注意要带套,摄像头朝下,头部低一点往下磕.因为nfc芯片在头部,估计是接触不良.

  5. Oracle里SID、SERVICE_NAME

    本文仅用作备忘,无实际指导意义,逻辑略混乱. 1.命令show parameter name; SQL> show parameter name; NAME TYPE VALUE ------- ...

  6. oracle限制ip訪問

    我這oracle版本為11.2.0.4,裝的GRID,所以在grid用戶下編輯sqlnet.ora 1.cd  /grid/product/11.2.0/network/admin 2.編輯sqlne ...

  7. [JavaCore]JAVA中的泛型

    JAVA中的泛型 [更新总结] 泛型就是定义在类里面的一个类型,这个类型在编写类的时候是不确定的,而在初始化对象时,必须确定该类型:这个类型可以在一个在里定义多个:在一旦使用某种类型,在类方法中,那么 ...

  8. Windows Live Writer技巧

    (此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:今天的内容虽然和开发技术无关,却应该和喜欢写东西的技术人员有关,比如我所有的文章都是用 ...

  9. System.Web.Caching.Cache类 缓存

    1.文件缓存依赖 public partial class _Default : System.Web.UI.Page { protected void Page_Load(object sender ...

  10. MySQL中的SQL语言

    从功能上划分,SQL 语言可以分为DDL,DML和DCL三大类.1. DDL(Data Definition Language)数据定义语言,用于定义和管理 SQL 数据库中的所有对象的语言 :CRE ...