Kafka是分布式发布-订阅消息系统

https://www.biaodianfu.com/kafka.html

Kafka是分布式发布-订阅消息系统。它最初由LinkedIn公司开发,之后成为Apache项目的一部分。Kafka是一个分布式的,可划分的,冗余备份的持久性的日志服务。它主要用于处理活跃的流式数据。

在大数据系统中,常常会碰到一个问题,整个大数据是由各个子系统组成,数据需要在各个子系统中高性能,低延迟的不停流转。传统的企业消息系统并不是非常适合大规模的数据处理。为了已在同时搞定在线应用(消息)和离线应用(数据文件,日志)Kafka就出现了。Kafka可以起到两个作用:

  1. 降低系统组网复杂度。
  2. 降低编程复杂度,各个子系统不在是相互协商接口,各个子系统类似插口插在插座上,Kafka承担高速数据总线的作用。

Kafka主要特点:

  1. 同时为发布和订阅提供高吞吐量。据了解,Kafka每秒可以生产约25万消息(50 MB),每秒处理55万消息(110 MB)。
  2. 可进行持久化操作。将消息持久化到磁盘,因此可用于批量消费,例如ETL,以及实时应用程序。通过将数据持久化到硬盘以及replication防止数据丢失。
  3. 分布式系统,易于向外扩展。所有的producer、broker和consumer都会有多个,均为分布式的。无需停机即可扩展机器。
  4. 消息被处理的状态是在consumer端维护,而不是由server端维护。当失败时能自动平衡。
  5. 支持online和offline的场景。

Kayka的架构:

Kayka的整体架构非常简单,是显式分布式架构,producer、broker(kafka)和consumer都可以有多个。Producer,consumer实现Kafka注册的接口,数据从producer发送到broker,broker承担一个中间缓存和分发的作用。broker分发注册到系统中的consumer。broker的作用类似于缓存,即活跃的数据和离线处理系统之间的缓存。客户端和服务器端的通信,是基于简单,高性能,且与编程语言无关的TCP协议。几个基本概念:

  1. Topic:特指Kafka处理的消息源(feeds of messages)的不同分类。
  2. Partition:Topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。partition中的每条消息都会被分配一个有序的id(offset)。
  3. Message:消息,是通信的基本单位,每个producer可以向一个topic(主题)发布一些消息。
  4. Producers:消息和数据生产者,向Kafka的一个topic发布消息的过程叫做producers。
  5. Consumers:消息和数据消费者,订阅topics并处理其发布的消息的过程叫做consumers。
  6. Broker:缓存代理,Kafa集群中的一台或多台服务器统称为broker。

消息发送的流程:

  1. Producer根据指定的partition方法(round-robin、hash等),将消息发布到指定topic的partition里面
  2. kafka集群接收到Producer发过来的消息后,将其持久化到硬盘,并保留消息指定时长(可配置),而不关注消息是否被消费。
  3. Consumer从kafka集群pull数据,并控制获取消息的offset

Kayka的设计:

1、吞吐量

高吞吐是kafka需要实现的核心目标之一,为此kafka做了以下一些设计:

  1. 数据磁盘持久化:消息不在内存中cache,直接写入到磁盘,充分利用磁盘的顺序读写性能
  2. zero-copy:减少IO操作步骤
  3. 数据批量发送
  4. 数据压缩
  5. Topic划分为多个partition,提高parallelism

负载均衡

  1. producer根据用户指定的算法,将消息发送到指定的partition
  2. 存在多个partiiton,每个partition有自己的replica,每个replica分布在不同的Broker节点上
  3. 多个partition需要选取出lead partition,lead partition负责读写,并由zookeeper负责fail over
  4. 通过zookeeper管理broker与consumer的动态加入与离开

拉取系统

由于kafka broker会持久化数据,broker没有内存压力,因此,consumer非常适合采取pull的方式消费数据,具有以下几点好处:

  1. 简化kafka设计
  2. consumer根据消费能力自主控制消息拉取速度
  3. consumer根据自身情况自主选择消费模式,例如批量,重复消费,从尾端开始消费等

可扩展性

当需要增加broker结点时,新增的broker会向zookeeper注册,而producer及consumer会根据注册在zookeeper上的watcher感知这些变化,并及时作出调整。

Kayka的应用场景:

1.消息队列

比起大多数的消息系统来说,Kafka有更好的吞吐量,内置的分区,冗余及容错性,这让Kafka成为了一个很好的大规模消息处理应用的解决方案。消息系统一般吞吐量相对较低,但是需要更小的端到端延时,并尝尝依赖于Kafka提供的强大的持久性保障。在这个领域,Kafka足以媲美传统消息系统,如ActiveMRRabbitMQ

2.行为跟踪

Kafka的另一个应用场景是跟踪用户浏览页面、搜索及其他行为,以发布-订阅的模式实时记录到对应的topic里。那么这些结果被订阅者拿到后,就可以做进一步的实时处理,或实时监控,或放到hadoop/离线数据仓库里处理。

3.元信息监控

作为操作记录的监控模块来使用,即汇集记录一些操作信息,可以理解为运维性质的数据监控吧。

4.日志收集

日志收集方面,其实开源产品有很多,包括Scribe、Apache Flume。很多人使用Kafka代替日志聚合(log aggregation)。日志聚合一般来说是从服务器上收集日志文件,然后放到一个集中的位置(文件服务器或HDFS)进行处理。然而Kafka忽略掉文件的细节,将其更清晰地抽象成一个个日志或事件的消息流。这就让Kafka处理过程延迟更低,更容易支持多数据源和分布式数据处理。比起以日志为中心的系统比如Scribe或者Flume来说,Kafka提供同样高效的性能和因为复制导致的更高的耐用性保证,以及更低的端到端延迟。

5.流处理

这个场景可能比较多,也很好理解。保存收集流数据,以提供之后对接的Storm或其他流式计算框架进行处理。很多用户会将那些从原始topic来的数据进行阶段性处理,汇总,扩充或者以其他的方式转换到新的topic下再继续后面的处理。例如一个文章推荐的处理流程,可能是先从RSS数据源中抓取文章的内容,然后将其丢入一个叫做“文章”的topic中;后续操作可能是需要对这个内容进行清理,比如回复正常数据或者删除重复数据,最后再将内容匹配的结果返还给用户。这就在一个独立的topic之外,产生了一系列的实时数据处理的流程。StromSamza是非常著名的实现这种类型数据转换的框架。

6.事件源

事件源是一种应用程序设计的方式,该方式的状态转移被记录为按时间顺序排序的记录序列。Kafka可以存储大量的日志数据,这使得它成为一个对这种方式的应用来说绝佳的后台。比如动态汇总(News feed)。

7.持久性日志(commit log)

Kafka可以为一种外部的持久性日志的分布式系统提供服务。这种日志可以在节点间备份数据,并为故障节点数据回复提供一种重新同步的机制。Kafka中日志压缩功能为这种用法提供了条件。在这种用法中,Kafka类似于Apache BookKeeper项目。

Kayka的设计要点:

1、直接使用linux 文件系统的cache,来高效缓存数据。

2、采用linux Zero-Copy提高发送性能。传统的数据发送需要发送4次上下文切换,采用sendfile系统调用之后,数据直接在内核态交换,系统上下文切换减少为2次。根据测试结果,可以提高60%的数据发送性能。Zero-Copy详细的技术细节可以参考:https://www.ibm.com/developerworks/linux/library/j-zerocopy/

3、数据在磁盘上存取代价为O(1)。kafka以topic来进行消息管理,每个topic包含多个part(ition),每个part对应一个逻辑log,有多个segment组成。每个segment中存储多条消息(见下图),消息id由其逻辑位置决定,即从消息id可直接定位到消息的存储位置,避免id到位置的额外映射。每个part在内存中对应一个index,记录每个segment中的第一条消息偏移。发布者发到某个topic的消息会被均匀的分布到多个part上(随机或根据用户指定的回调函数进行分布),broker收到发布消息往对应part的最后一个segment上添加该消息,当某个segment上的消息条数达到配置值或消息发布时间超过阈值时,segment上的消息会被flush到磁盘,只有flush到磁盘上的消息订阅者才能订阅到,segment达到一定的大小后将不会再往该segment写数据,broker会创建新的segment。

4、显式分布式,即所有的producer、broker和consumer都会有多个,均为分布式的。Producer和broker之间没有负载均衡机制。broker和consumer之间利用zookeeper进行负载均衡。所有broker和consumer都会在zookeeper中进行注册,且zookeeper会保存他们的一些元数据信息。如果某个broker和consumer发生了变化,所有其他的broker和consumer都会得到通知。

参考资料:

Kafka是分布式发布-订阅消息系统的更多相关文章

  1. Kafka logo分布式发布订阅消息系统 Kafka

    分布式发布订阅消息系统 Kafka kafka是一种高吞吐量的分布式发布订阅消息系统,她有如下特性: 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳 ...

  2. Kafka(分布式发布-订阅消息系统)工作流程说明

    Kafka系统架构Apache Kafka是分布式发布-订阅消息系统.它最初由LinkedIn公司开发,之后成为Apache项目的一部分.Kafka是一种快速.可扩展的.设计内在就是分布式的,分区的和 ...

  3. 分布式发布订阅消息系统 Kafka 架构设计[转]

    分布式发布订阅消息系统 Kafka 架构设计 转自:http://www.oschina.net/translate/kafka-design 我们为什么要搭建该系统 Kafka是一个消息系统,原本开 ...

  4. 分布式发布订阅消息系统Kafka

    高吞吐量的分布式发布订阅消息系统Kafka--安装及测试   一.Kafka概述 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. 这种动作(网页浏览, ...

  5. kafka 基础知识梳理-kafka是一种高吞吐量的分布式发布订阅消息系统

    一.kafka 简介 今社会各种应用系统诸如商业.社交.搜索.浏览等像信息工厂一样不断的生产出各种信息,在大数据时代,我们面临如下几个挑战: 如何收集这些巨大的信息 如何分析它 如何及时做到如上两点 ...

  6. 高吞吐量的分布式发布订阅消息系统Kafka--安装及测试

    一.Kafka概述 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因 ...

  7. 分布式发布订阅消息系统 Kafka 架构设计

    我们为什么要搭建该系统 Kafka是一个分布式.分区的.多副本的.多订阅者的“提交”日志系统. 我们构建这个系统是因为我们认为,一个实现完好的操作日志系统是一个最基本的基础设施,它可以替代一些系统来作 ...

  8. Kafka — 高吞吐量的分布式发布订阅消息系统【转】

    1.Kafka独特设计在什么地方?2.Kafka如何搭建及创建topic.发送消息.消费消息?3.如何书写Kafka程序?4.数据传输的事务定义有哪三种?5.Kafka判断一个节点是否活着有哪两个条件 ...

  9. 一脸懵逼学习KafKa集群的安装搭建--(一种高吞吐量的分布式发布订阅消息系统)

    kafka的前言知识: :Kafka是什么? 在流式计算中,Kafka一般用来缓存数据,Storm通过消费Kafka的数据进行计算.kafka是一个生产-消费模型. Producer:生产者,只负责数 ...

随机推荐

  1. iOS带动画的环形进度条(进度条和数字同步)

    本篇写的是实现环形进度条,并带动画效果,要实现这些,仅能通过自己画一个 方法直接看代码 为了方便多次调用,用继承UIView的方式 .m文件 #import <UIKit/UIKit.h> ...

  2. NTP服务器引起的上行带宽超大

    2014年2月11日,centos服务器突然上行带宽8M,耗光所有带宽,不能远程SSH登录维护. 到机房直接使用界面登录,安装iptraf,运行后选择 Statistical breakdowns - ...

  3. Sumlime Text编辑文件后快速刷新浏览器

    作为Web开发人员,我们经常会这么做:在编辑器中调整代码,保存文件,切换到浏览器,然后刷新浏览器页面来查看结果.在代码编辑过程中,我们需要重复进行很多次这些操作. 如果你使用的是Sublime Tex ...

  4. 1.3 基础知识——GP2.1 方针(Policy)

    摘要: 方针这个GP每个PA都有,其实CMMI实践有没有实在价值,就在于方针!如果我们做出来的CMMI实践仅仅就是写文档.多步骤.没事找事,那其实就是违背了公司的商业目标,公司的商业目标简单说就是:用 ...

  5. iis中限制访问某个文件或某个类型的文件配置方法

    Note:此处不是权限设置问题,此处不是权限设置问题,此处不是权限设置问题!只是出于数据或者网络安全,禁止扫描工具直接扫描到某些包含敏感信息的文件,尤其比如日志.配置等 默认ASP.NET已经考虑到了 ...

  6. (转) 一步一步学习ASP.NET 5 (五)- TypeScript

    转发:微软MVP 卢建晖 的文章,希望对大家有帮助.原文:http://blog.csdn.net/kinfey/article/details/44568971 编者语 : 人总会多次犯错,历史上告 ...

  7. java.lang.IllegalStateException:Web app root system property already set to different value 错误原因及解决 Log4j

    Log4j是Apache的一个开放源代码项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台.文件.GUI组件.甚至是套接口 服务器.NT的事件记录器.UNIX Syslog守护进程等: ...

  8. Lojic X

    媒体 赫兹 电话  500HZ 网络数据 8000HZ CD  44100HZ  电脑 48000HZ DVD 96000HZ 最大值(蓝光) 192000HZ   横向———————— 清晰度   ...

  9. Zero to One读后感

    Zero to One是一本不错的书,无论你是在职场还是在创业都应该看看先.书中没有告诉你任何的职业技巧,但是很明确的告诉了你应该有的思考方式,告诉你人与机器的关系,告诉成功企业固有的模式以及你为什么 ...

  10. 十五天精通WCF——第十三天 用WCF来玩Rest

    在我们玩wcf的时候,都会潜意识的觉得wcf就是通过soap协议交换消息的,并且可以在basic,tcp,msmq等等绑定中任意切换, 牛逼的一塌糊涂,但是呢,如果说哪一天wcf不再使用soap协议, ...