[问题2014S06]  解答  (本解答由巴闻嘉同学给出)

设特征多项式 \[f(x)=\det(xI_V-\varphi)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\] 则由 Cayley-Hamilton 定理可得 \[\varphi^n+a_{n-1}\varphi^{n-1}+\cdots+a_1\varphi+a_0I_V=0.\] 特别地, 上式作用在向量 \(\alpha\) 上可得 \[\varphi^n(\alpha)=-a_{n-1}\varphi^{n-1}(\alpha)-\cdots-a_1\varphi(\alpha)-a_0(\alpha). \cdots\cdots(1)\] 通过数学归纳法不难证明: 对任意的 \(k\geq n\), \(\varphi^k(\alpha)\) 都是 \(\varphi^{n-1}(\alpha)\), \(\cdots\), \(\varphi(\alpha)\), \(\alpha\) 的线性组合, 从而 \[V=L(\alpha,\varphi(\alpha),\cdots)=L(\alpha,\varphi(\alpha),\cdots,\varphi^{n-1}(\alpha)).\] 因为 \(\dim V=n\), 所以 \(\{\alpha,\varphi(\alpha),\cdots,\varphi^{n-1}(\alpha))\}\) 是 \(V\) 的一组基. 由 (1) 式可知 \(\varphi\) 在基 \(\{\alpha,\varphi(\alpha),\cdots,\varphi^{n-1}(\alpha))\}\) 下的表示矩阵为:

\[A=\begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}, \cdots\cdots(2)\]

即为特征多项式 \(f(x)\) 相伴的友阵 (见复旦高代教材第 250 页复习题 15).

由复旦高代教材第 265 页引理 7.4.1 知 \(\lambda I-A\) 相抵于 \(\mathrm{diag}\{1,\cdots,1,f(\lambda)\}\). 由条件不妨设 \(f(x)=g(x)h(x)\), 其中 \((g(x),h(x))=1\). 由复旦高代教材第 261 页习题 7.2.4 或第 271 页引理 7.6.2 的证明知 \(\mathrm{diag}\{1,\cdots,1,f(\lambda)\}\) 相抵于 \(\mathrm{diag}\{1,\cdots,1,g(\lambda),h(\lambda)\}\). 设 \(B=\mathrm{diag}\{C,D\}\) 为分块对角阵, 其中 \(p\) 阶矩阵 \(C\) 是 \(g(x)\) 的友阵, \(q\) 阶矩阵 \(D\) 是 \(h(x)\) 的友阵. 再次由复旦高代教材第 265 页引理 7.4.1 知 \(\lambda I-B\) 相抵于 \(\mathrm{diag}\{1,\cdots,1,g(\lambda);1,\cdots,1,h(\lambda)\}\). 由复旦高代教材第 265 页引理 7.4.2 知 \(\lambda I-A\) 相抵于 \(\lambda I-B\), 从而由复旦高代教材第 255 页定理 7.1.2 知 \(A\) 相似于 \(B=\mathrm{diag}\{C,D\}\).

因为 \(A\) 是 \(\varphi\) 在某组基下的表示矩阵, 于是存在另一组基 \(\{\beta_1,\cdots,\beta_p;\gamma_1,\cdots,\gamma_q\}\), 使得 \(\varphi\) 在这组基下的表示矩阵为 \(B=\mathrm{diag}\{C,D\}\). 令 \(\beta=\beta_1\), \(\gamma=\gamma_1\). 由于 \(C,D\) 也是形如 (2) 式那样的友阵, 不难验证 \[L(\beta,\varphi(\beta),\cdots)=L(\beta_1,\cdots,\beta_p);\,\,L(\gamma,\varphi(\gamma),\cdots)=L(\gamma_1,\cdots,\gamma_q),\] 因此 \[V=L(\beta_1,\cdots,\beta_p)\oplus L(\gamma_1,\cdots,\gamma_q)=L(\beta,\varphi(\beta),\cdots)\oplus L(\gamma,\varphi(\gamma),\cdots). \quad\Box\]

[问题2014S06] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. json转换数据后面参数要带ture,代码

    强大的PHP已经提供了内置函数:json_encode() 和 json_decode().很容易理解,json_encode()就是将PHP数组转换成Json.相反,json_decode()就是将 ...

  2. 【代码升级】【iCore3 双核心板】例程二十八:FSMC实验——读写FPGA

    实验指导书及代码包下载: http://pan.baidu.com/s/1qXAxwgk iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...

  3. 【iCore3 双核心板_FPGA】例程一:认识FPGA

    实验指导书及代码包下载: http://pan.baidu.com/s/1kUa05FL iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...

  4. 【iCore3双核心板】iCore3双核心板使用说明(图文)

    1.iCore3供电.程序下载线路连接示意图(使用iTool2) 2.iCore3供电.程序下载线路连接示意图(使用J-link和Blaster) 3.iCore3供电.读U盘线路连接示意图

  5. HDU 5416 CRB and Tree(前缀思想+DFS)

    CRB and Tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

  6. Mac OS X 背后的故事

    Mac OS X 背后的故事 作者: 王越  来源: <程序员>  发布时间: 2013-01-22 10:55  阅读: 25840 次  推荐: 49   原文链接   [收藏]   ...

  7. buffer pool

    https://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_buffer_pool buffer pool The memory area t ...

  8. MEMORY Storage Engine MEMORY Tables TEMPORARY TABLE max_heap_table_size

    http://dev.mysql.com/doc/refman/5.7/en/create-table.html You can use the TEMPORARY keyword when crea ...

  9. Java集合---HashMap源码剖析

    一.HashMap概述二.HashMap的数据结构三.HashMap源码分析     1.关键属性     2.构造方法     3.存储数据     4.调整大小 5.数据读取           ...

  10. uniq-删除重复

    uniq常用于管道中,用来删除已使用sort排序完成的重复记录. uniq有3个好用的选项: -c 可在每个输出行之前加上该行重复的次数: -d 仅显示重复的行 -u 仅显示未重复的行