几何+线段交点+spfa(POJ1066)
Treasure Hunt
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 20000/10000K (Java/Other)
Total Submission(s) : 3 Accepted Submission(s) : 2
walls, which intersect to form numerous enclosed chambers. Currently, no doors exist to allow access to any chamber. This state-of-the-art technology has also pinpointed the location of the treasure room. What these dedicated (and greedy) archeologists want
to do is blast doors through the walls to get to the treasure room. However, to minimize the damage to the artwork in the intervening chambers (and stay under their government grant for dynamite) they want to blast through the minimum number of doors. For
structural integrity purposes, doors should only be blasted at the midpoint of the wall of the room being entered. You are to write a program which determines this minimum number of doors.
An example is shown below:
at (0,0); (0,100); (100,100) and (100,0) and are not included in the list of walls. The interior walls always span from one exterior wall to another exterior wall and are arranged such that no more than two walls intersect at any point. You may assume that
no two given walls coincide. After the listing of the interior walls there will be one final line containing the floating point coordinates of the treasure in the treasure room (guaranteed not to lie on a wall).
7
20 0 37 100
40 0 76 100
85 0 0 75
100 90 0 90
0 71 100 61
0 14 100 38
100 47 47 100
54.5 55.4
Number of doors = 2
#include"string.h"
#include"stdio.h"
#include"iostream"
#include"algorithm"
#include"queue"
#include"stack"
#define M 1000
#define N 100009
#include"stdlib.h"
#include"math.h"
#define inf 10000000000000000LL
#define INF 0x3f3f3f3f
const double PI=acos(-1.0);
#define eps 1e-10
using namespace std;
struct st
{
int u,v,next;
st(int vv)
{
v=vv;
}
};
vector<st>edge[M];
int use[M],dist[M];
void spfa(int s,int n)
{
int i;
for(i=1;i<=n;i++)
{
dist[i]=INF;
use[i]=0;
}
queue<int>q;
dist[s]=0;
use[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(i=0;i<(int)edge[u].size();i++)
{
int v=edge[u][i].v;
if(dist[v]>dist[u]+1)
{
dist[v]=dist[u]+1;
if(!use[v])
{
use[v]=1;
q.push(v);
}
}
}
}
}
struct node
{
double x,y;
int id;
node (){}
node (double xx,double yy):x(xx),y(yy){}
node operator -(node p)
{
return node (x-p.x,y-p.y);
}
double operator *(node p)
{
return x*p.y-y*p.x;
}
double operator ^(node p)
{
return x*p.x+y*p.y;
}
}p[M];
struct line
{
node s,e;
int id;
line(){}
line(double x1,double y1,double x2,double y2)
{
s.x=x1;
s.y=y1;
e.x=x2;
e.y=y2;
}
line(node a,node b)
{
s=a;
e=b;
}
}l[M],L[M];
double max(double a,double b)
{
return a>b?a:b;
}
double min(double a,double b)
{
return a<b?a:b;
}
double cross(node a,node b,node c)
{
return (b-a)*(c-a);
}
double dot(node a,node b,node c)
{
return (b-a)^(c-a);
}
double len(node a)
{
return sqrt(a^a);
}
double dis(node a,node b)
{
return len(b-a);
}
int judge(line a,line b)
{
if(fabs(cross(a.s,a.e,b.s))<eps&&fabs(cross(a.s,a.e,b.e))<eps)//重合
return 1;
else if(fabs((a.e-a.s)*(b.e-b.s))<eps)//平行
return -1;
else
return 0;//相交
}
node intersection(line a,line b)
{
double a1=a.s.y-a.e.y;
double b1=a.e.x-a.s.x;
double c1=(a.e.y-a.s.y)*a.s.x+a.s.y*(a.s.x-a.e.x);
double a2=b.s.y-b.e.y;
double b2=b.e.x-b.s.x;
double c2=(b.e.y-b.s.y)*b.s.x+b.s.y*(b.s.x-b.e.x);
node ret;
ret.x=(c2*b1-c1*b2)/(a1*b2-a2*b1);
ret.y=(c2*a1-c1*a2)/(a2*b1-a1*b2);
return ret;
}
int paichi(line a,line b)//快速排斥,若通过快速排斥进行跨立实验,否则无交点;
{
if(max(a.e.x,a.s.x)>=min(b.s.x,b.e.x)
&&max(b.s.x,b.e.x)>=min(a.s.x,a.e.x)
&&max(a.s.y,a.e.y)>=min(b.s.y,b.e.y)
&&max(b.s.y,b.e.y)>=min(a.s.y,a.e.y))
return 1;
else
return 0;
}
int kuali(line a,line b)//跨立实验(通过相互跨立则可确定两线段相交返回1)
{
if(cross(a.s,a.e,b.s)*cross(a.s,a.e,b.e)<=0
&&cross(b.s,b.e,a.s)*cross(b.s,b.e,a.e)<=0)
return 1;
return 0;
}
int cmp(node a,node b)
{
if(fabs(a.x-b.x)<eps)
return a.y<b.y;
else
return a.x<b.x;
}
int main()
{
int n,i,j,k;
while(scanf("%d",&n)!=-1)
{
for(i=1;i<=n;i++)
scanf("%lf%lf%lf%lf",&l[i].s.x,&l[i].s.y,&l[i].e.x,&l[i].e.y);
l[++n]=line(0,0,100,0);
l[++n]=line(100,0,100,100);
l[++n]=line(100,100,0,100);
l[++n]=line(0,100,0,0);
node tar;
scanf("%lf%lf",&tar.x,&tar.y);
int num=0;
for(i=1;i<=n;i++)
{
k=0;
p[k++]=node(l[i].s);
p[k++]=node(l[i].e);
for(j=1;j<=n;j++)
{
if(i==j)continue;
if(paichi(l[i],l[j])&&kuali(l[i],l[j]))
{
p[k++]=intersection(l[i],l[j]);
}
}
sort(p,p+k,cmp);
for(j=1;j<k;j++)
{
L[++num]=line(p[j-1],p[j]);
L[num].id=i;
}
}
for(i=1;i<=num;i++)
{
p[i]=node((L[i].s.x+L[i].e.x)/2,(L[i].s.y+L[i].e.y)/2);
p[i].id=L[i].id;
}
p[++num]=tar;
p[num].id=-1;
for(i=1;i<=num;i++)
{
for(j=i+1;j<=num;j++)
{
line PL=line(p[i],p[j]);
int flag=0;
for(k=1;k<=n;k++)
{
if(p[i].id==k||p[j].id==k)continue;
if(paichi(PL,l[k])&&kuali(PL,l[k]))
{
flag=1;
break;
}
}
if(!flag)
{
edge[i].push_back(j);
edge[j].push_back(i);
}
}
}
spfa(num,num);
int ans=INF;
for(i=1;i<=num;i++)
{
if(p[i].id>=n-3)
{
//printf("%d ",dist[i]);
if(ans>dist[i])
{
ans=dist[i];
k=i;
}
}
}
printf("Number of doors = %d\n",ans);
//printf("%lf %lf\n",p[k].x,p[k].y);
for(i=1;i<=num;i++)
edge[i].clear();
}
}
几何+线段交点+spfa(POJ1066)的更多相关文章
- 谈谈"求线段交点"的几种算法(js实现,完整版)
		
"求线段交点"是一种非常基础的几何计算, 在很多游戏中都会被使用到. 下面我就现学现卖的把最近才学会的一些"求线段交点"的算法总结一下, 希望对大家有所帮助. ...
 - sgu 129 Inheritance 凸包,线段交点,计算几何 难度:2
		
129. Inheritance time limit per test: 0.25 sec. memory limit per test: 4096 KB The old King decided ...
 - hdu 2857:Mirror and Light(计算几何,点关于直线的对称点,求两线段交点坐标)
		
Mirror and Light Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
 - EDU 50 E. Covered Points 利用克莱姆法则计算线段交点
		
E. Covered Points 利用克莱姆法则计算线段交点.n^2枚举,最后把个数开方,从ans中减去. ans加上每个线段的定点数, 定点数用gcs(△x , △y)+1计算. #include ...
 - POJ1066线段交点
		
POJ1066 题意:给出一个100*100的正方形区域,通过若干连接区域边界的线段将正方形区域分割为多个不规则多边形小区域,然后给出宝藏位置,要求从区域外部开辟到宝藏所在位置的一条路径,使得开辟路径 ...
 - hdu 1086(计算几何入门题——计算线段交点个数)
		
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2 ...
 - 《算法问题实战策略》-chaper15-计算几何-线段相交
		
这篇文章着力来讨论线段相交这一个问题. 给出两条线段,如何判断这两条线段相交? 如果这两条线段相交,如何求其交点? 线段相交问题通常由于其繁杂的情况种类而让人避而远之,在这里希望通过笔者的简化讨论希望 ...
 - 【计算几何初步-线段相交】【HDU1089】线段交点
		
You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3 ...
 - 简单几何(线段相交)+模拟 POJ 3449 Geometric Shapes
		
题目传送门 题意:给了若干个图形,问每个图形与哪些图形相交 分析:题目说白了就是处理出每个图形的线段,然后判断是否相交.但是读入输出巨恶心,就是个模拟题加上线段相交的判断,我第一次WA不知道输出要按字 ...
 
随机推荐
- [R语言统计]频数表
			
频数表在统计学中是一个非常基本并且重要的概念,我们这里就来讲解它的基本用法. 首先我们需要载入数据,并查看数据的基本信息 install.packages('vcd') #安装vcd包,其中有可以利用 ...
 - Hbase rowkey设计一
			
转自 http://blog.csdn.net/lifuxiangcaohui/article/details/40621067 hbase所谓的三维有序存储的三维是指:rowkey(行主键),col ...
 - 后台测试常需要的htm样式
			
<form name="form" method="post" action="#"> <input type=" ...
 - Python RGB 和HSV颜色相互转换
			
转自:http://outofmemory.cn/code-snippet/1002/Python-RGB-HSV-color-together-switch Python RGB 和HSV颜色相互转 ...
 - QLayout布局时自动占满全部的空间。
			
QLayout子类布局时会自动占满全部的空间,和一般需要多大空间占多大空间的要求不符合,很烦人. 案例: 本来一个容器简单的放几个组件会剩余很大的空间,就那么剩余就好.
 - 【Java 线程的深入研究1】Java 提供了三种创建线程的方法
			
Java 提供了三种创建线程的方法: 通过实现 Runnable 接口: 通过继承 Thread 类本身: 通过 Callable 和 Future 创建线程. 1.通过实现 Runnable 接口来 ...
 - jpa动态分页查找
			
https://my.oschina.net/buwei/blog/172402 http://www.cnblogs.com/derry9005/p/6282571.html http://2560 ...
 - How many virtual users do I need? 计算需要的vuser
			
基本公式:--------English:Total Transations = TPS * Vuser==>Vuser = Total Transations / TPS=========== ...
 - jQuery页面刷新(局部、全部)问题分析
			
本文实例分两部分对jquery刷新问题进行介绍,第一部分介绍了呢页面局部刷新:第二部分介绍了页面全部刷新第一:页面局部刷新 jQuery对Ajax操作进行了封装,在jQuery中$.ajax()方法属 ...
 - 如何使用ChemDraw绘制自由基符号
			
ChemDraw软件是一款全球领先的化学绘图工具,能够绘制各种复杂的化学符号和化学结构图形.ChemDraw汉化版结合了中国用户的使用习惯,可以帮助国内化学行业工作者更加轻松快捷地绘制化学图形.本教程 ...