【BZOJ4709】柠檬(动态规划,单调栈)

题面

BZOJ

题解

从左取和从右取没有区别,本质上就是要分段。

设\(f[i]\)表示前\(i\)个位置的最大值。

那么相当于我们枚举一个前面的位置\(j\),然后找到这一段中最大的\(s_0t^2\)

但是这样子很不优秀。

我们贪心的思考一下,既然这一段最后加起来只能变成某一个\(s_0\),

那么,我们这一段开头和结尾都一定要是\(s_0\),

否则我们把结尾那些不等于\(s_0\)的单独分开一段,

这样子的答案一定不会更差,前缀同理。

因此每次的\(s_0\)一定由前面的某个\(s_0\)转移过来。

转移是\(f[i]=f[j-1]+s[i]t^2\),其中\(t^2\)是\([j,i]\)中\(s[i]\)的个数。

发现\(t^2\)增长很快于\(y=x\),显然这个式子是具有决策单调性的。

如果当前位置\(k\lt j\),那么一旦\(k\)的转移优于了\(j\),那么\(k\)就永远优于\(j\)了。(这不显然吗?

那么,对于每一个\(s\)都维护一个单调栈(\(vector\))

每次将后面不优的全部弹出去,然后进行转移。

注意几点:

首先是不优的靠计算,记录一下当前位置的前缀\(t\)的值,然后每次二分检查单调栈里面的第二个元素是否优于栈顶元素,也就是二分查找一下超过的时间。

还有一种可能出现的情况,即当前第二个元素不比栈顶优秀,但是第三个元素比栈顶优秀。

对于栈顶的几个元素,假设\(a<b<c\),如果\(a\)超过\(b\)的时间要早于\(b\)超过\(c\)的时间,那么\(b\)是没有意义的。

所以对于当前位置\(i\),我们检查栈顶元素和第二个元素超过\(i\)的时间

如果第二个元素超过\(i\)的时间更早,那么第一个元素就没有意义了,可以直接弹掉。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll f[MAX];
vector<int> g[MAX];
int n,a[MAX],num[MAX],s[MAX];
ll calc(int j,int x){return f[j-1]+1ll*a[j]*x*x;}
int Time(int x,int y)
{
int l=1,r=n,ret=n+1;
while(l<=r)
{
int mid=(l+r)>>1;
if(calc(x,mid-s[x]+1)>=calc(y,mid-s[y]+1))ret=mid,r=mid-1;
else l=mid+1;
}
return ret;
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
{
s[i]=++num[a[i]=read()];int l=g[a[i]].size();
while(l>=2&&Time(g[a[i]][l-2],g[a[i]][l-1])<=Time(g[a[i]][l-1],i))
--l,g[a[i]].pop_back();
g[a[i]].push_back(i);++l;
while(l>=2&&Time(g[a[i]][l-2],g[a[i]][l-1])<=s[i])
--l,g[a[i]].pop_back();
f[i]=calc(g[a[i]][l-1],s[i]-s[g[a[i]][l-1]]+1);
}
printf("%lld\n",f[n]);
}

【BZOJ4709】柠檬(动态规划,单调栈)的更多相关文章

  1. Luogu 1169 [ZJOI2007]棋盘制作 - 动态规划+单调栈

    Description 给一个01矩阵, 求出最大的01交错的正方形和最大的01交错的矩阵 Solution 用动态规划求出最大的正方形, 用单调栈求出最大的矩阵. 在这里仅介绍求出最大正方形(求最大 ...

  2. 【BZOJ4709】[Jsoi2011]柠檬 斜率优化+单调栈

    [BZOJ4709][Jsoi2011]柠檬 Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,0 ...

  3. BZOJ4709 Jsoi2011 柠檬【决策单调性+单调栈】

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...

  4. DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)

    前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...

  5. 【BZOJ 4709】柠檬 斜率优化dp+单调栈

    题意 给$n$个贝壳,可以将贝壳分成若干段,每段选取一个贝壳$s_i$,这一段$s_i$的数目为$num$,可以得到$num^2\times s_i$个柠檬,求最多能得到几个柠檬 可以发现只有在一段中 ...

  6. bzoj 4709 [Jsoi2011]柠檬——单调栈二分处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 题解:https://blog.csdn.net/neither_nor/articl ...

  7. 【单调栈 动态规划】bzoj1057: [ZJOI2007]棋盘制作

    好像还有个名字叫做“极大化”? Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源 于易经的思想,棋盘是一个8*8大小的黑白相间的 ...

  8. POJ 2559 Largest Rectangle in a Histogram (单调栈或者dp)

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15831 ...

  9. 洛谷P1020 导弹拦截【单调栈】

    题目:https://www.luogu.org/problemnew/show/P1020 题意: 给定一些导弹的高度. 一个导弹系统只能拦截高度不增的一系列导弹,问如果只有一个系统最多能拦截多少导 ...

随机推荐

  1. 安装centos minimal 版本后安装setup包(linux)

    网络配置好后,输入命令 yum install setuptool,安装过程有两个确认,输入Y即可

  2. 用phpcms如何将静态页面制作成企业网站(上)

    首先,先要准备好这个静态网页的源文件,如图 bs里面是一些css和js的文件,img则是放图片的,文件中的index是网页的首页 运行一下,看看 是这样的 然后打开phpcms文件,上篇博客中有提到, ...

  3. Windows网络通信(一):socket同步编程

    网络通信常用API 1. WSAStartup用于初始化WinSock环境 int WSAStartup( WORD wVersionRequested, LPWSADATA lpWSAData ); ...

  4. 软考之信息安全工程师(包含2016-2018历年真题详解+官方指定教程+VIP视频教程)

    软考-中级信息安全工程师2016-2018历年考试真题以及详细答案,同时含有信息安全工程师官方指定清华版教程.信息安全工程师高清视频教程.持续更新后续年份的资料.请点赞!!请点赞!!!绝对全部货真价实 ...

  5. ddms+adt+jdk的安装及调试开发安卓

    _______ ddms+adt+jdk的安装及调试开发安卓 目录 阐述 1 1  jdk安装 1 2  sdk安装 3 3  Eclipse安装 6 4  ADT安装 10 5  Ddms使用 16 ...

  6. nginx交替出现404和200

    今天在调试接口的时候,发现一个奇怪的问题,服务器接口交替返回404和200错误. 排查的时候发现nginx下有大量的404错误记录,而tomcat有两个,一个有正常的访问记录,而另一个虽然启动正常,但 ...

  7. python2和python3同时存在如何安装和使用pip

    linux下 如果没有pip则需要安装pip python2安装pip sudo apt install python-pip1如果是python3,则如下: sudo apt install pyt ...

  8. 基于Docker Compose构建的MySQL MHA集群

    Docker MySQL MHA 基于Docker 1.13.1之上构建的MySQL MHA Docker Compose Project 可快速启动GTID模式下的MasterHA集群, 主用于My ...

  9. 04慕课网《vue.js2.5入门》——Vue-cli开发todolist

    主要文件目录: 文件代码: 根实例,初始化vue: <!--index.html,网站入口页面,和main.jsp组成一套.vue文件,包含--> <!DOCTYPE html> ...

  10. struts2--文件上传类型3

    拦截器栈在<package>标签内 <action>标签外配置 如上我们如果把它定义成默认拦截器的话就不需要在 <action>标签中引入,没有的话需要引入拦截器 ...