P4027 [NOI2007]货币兑换

题目描述

小 \(Y\) 最近在一家金券交易所工作。该金券交易所只发行交易两种金券:\(A\) 纪念券(以下简称 \(A\) 券)和 \(B\) 纪念券(以下简称 \(B\) 券)。每个持有金券的顾客都有一个自己的帐户。金券的数目可以是一个实数。

每天随着市场的起伏波动,两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目。我们记录第 \(K\) 天中 \(A\) 券和 \(B\) 券的价值分别为 \(A_K\) 和 \(B_K\) (元/单位金券)。

为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法。

比例交易法分为两个方面:

a) 卖出金券:顾客提供一个\([0,100]\)内的实数 \(OP\) 作为卖出比例,其意义为:将 \(OP\%\) 的 \(A\) 券和 \(OP\%\) 的 \(B\) 券以当时的价值兑换为人民币;

b) 买入金券:顾客支付 \(IP\) 元人民币,交易所将会兑换给用户总价值为 \(IP\) 的金券,并且,满足提供给顾客的 \(A\) 券和 \(B\) 券的比例在第 \(K\) 天恰好为 \(Rate_K\);

例如,假定接下来 \(3\) 天内的 \(A_k\) 、\(B_k\) 、\(Rate_K\) 的变化分别为:

时间 \(A_k\) \(B_k\) \(Rate_k\)
第一天 1 1 1
第二天 1 2 2
第三天 2 2 3

假定在第一天时,用户手中有 \(100\) 元人民币但是没有任何金券。

用户可以执行以下的操作:

时间 用户操作 人民币(元) A券的数量 B券的数量
开户 \(100\) \(0\) \(0\)
第一天 买入 \(100\)元 \(0\) \(50\) \(50\)
第二天 卖出 \(50\%\) \(75\) \(25\) \(25\)
第二天 买入\(60\)元 \(15\) \(55\) \(40\)
第三天 卖出 \(100\%\) \(205\) \(0\) $0

注意到,同一天内可以进行多次操作。

小 \(Y\) 是一个很有经济头脑的员工,通过较长时间的运作和行情测算,他已经知道了未来 \(N\) 天内的 \(A\) 券和 \(B\) 券的价值以及 \(Rate\)。他还希望能够计算出来,如果开始时拥有 \(S\) 元钱,那么 \(N\) 天后最多能够获得多少元钱。

输入输出格式

输入格式:

第一行两个正整数 \(N\)、\(S\),分别表示小 \(Y\) 能预知的天数以及初始时拥有的钱数。

接下来 \(N\) 行,第 \(K\) 行三个实数 \(A_K\) 、\(B_K\) 、\(Rate_K\) ,意义如题目中所述。

输出格式:

只有一个实数 \(MaxProfit\),表示第 \(N\) 天的操作结束时能够获得的最大的金钱数目。答案保留 \(3\) 位小数。

说明

本题没有部分分,你的程序的输出只有和标准答案相差不超过\(0.001\)时,才能获得该测试点的满分,否则不得分。

测试数据设计使得精度误差不会超过 \(10^{-7}\) 。

对于\(40\%\)的测试数据,满足 \(N \le 10\);

对于\(60\%\)的测试数据,满足 \(N \le 1 000\);

对于\(100\%\)的测试数据,满足 \(N \le 100 000\);

对于\(100\%\)的测试数据,满足:

\(0 < A_K \le 10\);

\(0 < B_K \le 10\);

\(0 < Rate_K\le 100\);

\(MaxProfit \le 10^9\) ;

提示:

输入文件可能很大,请采用快速的读入方式。

必然存在一种最优的买卖方案满足:

每次买进操作使用完所有的人民币;

每次卖出操作卖出所有的金券。


居然有提示,虽然还是比较显而易见的..

太久没写斜率优化式子都没转过去..

令\(dp_i\)代表第\(i\)天(还未决定买不买)的最大拥有金钱数量

\[dp_i=\max(dp_j,\frac{dp_jRate_j}{Rate_jA_j+B_j}\times A_i+\frac{dp_j}{Rate_jA_j+B_j}\times B_i)
\]

然后把和\(i\)与和\(j\)有关的项分开表示

\[dp_i=a_jA_i+b_jB_i
\]

转换一下

\[a_j=-b_j\frac{B_i}{A_i}+\frac{dp_i}{A_i}
\]

这就很标准的斜率优化了叭,但发现这些东西没啥单调性,于是不能简单的单调队列了。

可以拿平衡树动态维护,不过CDQ的做法会更好写常数也更小。

说一下CDQ大概的实现

左边的按\(x\)坐标排序以后\(O(n)\)弄出个斜率递减的凸包,右边直接按斜率从大到小排序,然后像归并那样边合并边做就好了。这样应该写起来是最简单的,尝试写二分但发现有点麻烦。

注意要还原右边。


Code:

#include <cstdio>
#include <algorithm>
using std::max;
const int N=1e5+10;
const double eps=1e-7;
const double inf=1e10;
struct node
{
double a,b,c,k,ans;int id;
}q[N];
int s[N],tot,n;
double ans;
std::pair <double,double > poi[N];
bool cmp1(node n1,node n2){return n1.k>n2.k;}
bool cmp2(node n1,node n2){return n1.id<n2.id;}
double slope(int i,int j)
{
double x=poi[i].first,y=poi[i].second,xx=poi[j].first,yy=poi[j].second;
if(xx-x<eps) return inf;
return (yy-y)/(xx-x);
}
void CDQ(int l,int r)
{
if(l==r){q[l].ans=max(ans,q[l].ans),ans=max(ans,q[l].ans);return;}
int mid=l+r>>1;
CDQ(l,mid);
for(int i=l;i<=mid;i++)
poi[i]=std::make_pair(-q[i].ans/(q[i].a*q[i].c+q[i].b),q[i].ans/(q[i].a*q[i].c+q[i].b)*q[i].c);
std::sort(poi+l,poi+mid+1);
tot=0;
for(int i=l;i<=mid;i++)
{
while(tot>1&&slope(s[tot-1],s[tot])+eps<slope((s[tot]),i)) --tot;
s[++tot]=i;
}
std::sort(q+mid+1,q+r+1,cmp1);
int lp=1;
for(int i=mid+1;i<=r;i++)
{
while(lp<tot&&q[i].k+eps<slope(s[lp],s[lp+1])) ++lp;
q[i].ans=max(q[i].ans,-poi[s[lp]].first*q[i].b+poi[s[lp]].second*q[i].a);
}
std::sort(q+mid+1,q+r+1,cmp2);
CDQ(mid+1,r);
}
int main()
{
scanf("%d%lf",&n,&ans);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf",&q[i].a,&q[i].b,&q[i].c);
q[i].id=i,q[i].k=q[i].b/q[i].a;
}
CDQ(1,n);
printf("%.3lf\n",ans);
return 0;
}

2018.11.28

洛谷 P4027 [NOI2007]货币兑换 解题报告的更多相关文章

  1. 洛谷P4027 [NOI2007]货币兑换

    P4027 [NOI2007]货币兑换 算法:dp+斜率优化 题面十分冗长,题意大概是有一种金券每天价值会有变化,你可以在某些时间点买入或卖出所有的金券,问最大收益 根据题意,很容易列出朴素的状态转移 ...

  2. 洛谷 P2047 [NOI2007]社交网络 解题报告

    P2047 [NOI2007]社交网络 题目描述 在社交网络(\(social\) \(network\))的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有\ ...

  3. 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)

    题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = ...

  4. LOJ 2353 & 洛谷 P4027 [NOI2007]货币兑换(CDQ 分治维护斜率优化)

    题目传送门 纪念一下第一道(?)自己 yy 出来的 NOI 题. 考虑 dp,\(dp[i]\) 表示到第 \(i\) 天最多有多少钱. 那么有 \(dp[i]=\max\{\max\limits_{ ...

  5. 洛谷 P1783 海滩防御 解题报告

    P1783 海滩防御 题目描述 WLP同学最近迷上了一款网络联机对战游戏(终于知道为毛JOHNKRAM每天刷洛谷效率那么低了),但是他却为了这个游戏很苦恼,因为他在海边的造船厂和仓库总是被敌方派人偷袭 ...

  6. 洛谷 P4597 序列sequence 解题报告

    P4597 序列sequence 题目背景 原题\(\tt{cf13c}\)数据加强版 题目描述 给定一个序列,每次操作可以把某个数\(+1\)或\(-1\).要求把序列变成非降数列.而且要求修改后的 ...

  7. 洛谷1087 FBI树 解题报告

    洛谷1087 FBI树 本题地址:http://www.luogu.org/problem/show?pid=1087 题目描述 我们可以把由“0”和“1”组成的字符串分为三类:全“0”串称为B串,全 ...

  8. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  9. 洛谷 P3177 树上染色 解题报告

    P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...

随机推荐

  1. 安装centos minimal 版本后安装setup包(linux)

    网络配置好后,输入命令 yum install setuptool,安装过程有两个确认,输入Y即可

  2. JavaWeb(十三)——使用Session防止表单重复提交

    在平时开发中,如果网速比较慢的情况下,用户提交表单后,发现服务器半天都没有响应,那么用户可能会以为是自己没有提交表单,就会再点击提交按钮重复提交表单,我们在开发中必须防止表单重复提交. 一.表单重复提 ...

  3. sql server数据库中char,varchar,nvarchar字段的区别

    Char,varchar,nvarchar字段是sql server数据库中的三种字段类型.好多人在选择存储的时候不知道如何抉择,我给大家讲下这个三个字段类型的区别. Char(n)是长度为n个字节的 ...

  4. JMeter学习笔记(二) 一些实际应用的基础操作

    我在CSDN上面找到一位大师整理的jmeter性能测试基础,分享到这里继续学习 https://blog.csdn.net/u011541946/article/category/6893578/1

  5. 天下武功,无快不破,Python开发必备的6个库

    01 Python 必备之 PyPy PyPy 主要用于何处? 如果你需要更快的 Python 应用程序,最简单的实现的方法就是通过 PyPy ,Python 运行时与实时(JIT)编译器.与使用普通 ...

  6. Spark之spark shell

    前言:要学习spark程序开发,建议先学习spark-shell交互式学习,加深对spark程序开发的理解.spark-shell提供了一种学习API的简单方式,以及一个能够进行交互式分析数据的强大工 ...

  7. loadrunner11--基础使用

    每次开启电脑都需要破解一次Lr,汉化版的有问题,建议使用英文版的.我测试的环境是Windows7+IE8+LR11.(在Windows10上试过,谷歌和IE11都不能正常运行),以下我会具体来操作,最 ...

  8. Scrum立会报告+燃尽图(十月二十七日总第十八次)

    此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...

  9. 基于NABCD评论作品,及改进建议

    组名:杨老师粉丝群 组长:乔静玉 组员:吴奕瑶  刘佳瑞  公冶令鑫  杨磊  杨金铭  张宇  卢帝同 一.拉格朗日2018--<飞词> 1.1 NABCD分析   N(Need,需求) ...

  10. 把字符串"3,1,2,4"以","分割拆分为数组,数组元素并按从小到大的顺序排列

    package com.wangcf; /** * 把字符串"3,1,2,4"以","分割拆分为数组,数组元素并按从小到大的顺序排列 * @author fan ...