题目链接

BZOJ5314

题解

设\(f[i][j][0|1][0|1]\)表示\(i\)为根的子树,用了\(j\)个监测器,\(i\)节点是否被控制,\(i\)节点是否放置的方案数

然后转移即可

\(O(nk^2)\)??

用上子树大小来优化就是\(O(nk)\)的

对于子树大小都超过\(k\)的子树,转移\(O(k^2)\),这样的情况最多出现\(\frac{n}{k}\)次

对于子树大小有一个超过\(k\)的子树,没超过\(k\)的那个子树里每个点贡献\(O(k)\),这样的情况对每个点最多出现一次

实现时需要诸多常数优化,才能在\(BZOJ\)上\(AC\),洛谷上开O2随便过

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<map>
#define Redge(u) for (res int k = 0,to; k < ed[u].size(); k++)
#define REP(i,n) for (res int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define res register
using namespace std;
const int maxn = 100005,maxm = 105,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,K;
vector<int> ed[maxn];
inline void build(int u,int v){
ed[u].push_back(v);
ed[v].push_back(u);
}
inline void add(int& x,LL y){
x += y; x >= P ? x -= P : 0;
}
int f[maxn][maxm][2][2],fa[maxn],siz[maxn];
LL g[maxn][2][2];
void dfs(int u){
siz[u] = 1; f[u][0][0][0] = f[u][1][0][1] = 1;
Redge(u) if ((to = ed[u][k]) != fa[u]){
fa[to] = u; dfs(to);
for (res int i = 0,lim = min(siz[u],K); i <= lim; i++){
g[i][0][0] = f[u][i][0][0],f[u][i][0][0] = 0;
g[i][0][1] = f[u][i][0][1],f[u][i][0][1] = 0;
g[i][1][0] = f[u][i][1][0],f[u][i][1][0] = 0;
g[i][1][1] = f[u][i][1][1],f[u][i][1][1] = 0;
}
for (res int i = 0,lim = min(siz[u],K); i <= lim; i++)
for (res int j = 0,lim2 = min(siz[to],K); j <= lim2 && i + j <= K; j++){
add(f[u][i + j][0][0],g[i][0][0] * f[to][j][1][0] % P);
add(f[u][i + j][0][1],g[i][0][1] * ((f[to][j][0][0] + f[to][j][1][0])) % P);
add(f[u][i + j][1][0],(g[i][1][0] * ((f[to][j][1][0] + f[to][j][1][1])) + g[i][0][0] * f[to][j][1][1]) % P);
add(f[u][i + j][1][1],(g[i][1][1] * ((1ll * (f[to][j][0][0] + f[to][j][0][1]) + 1ll * (f[to][j][1][0] + f[to][j][1][1])) % P) + g[i][0][1] * (1ll * (f[to][j][0][1] + f[to][j][1][1]))) % P);
}
siz[u] += siz[to];
}
}
int main(){
n = read(); K = read();
for (int i = 1; i < n; i++) build(read(),read());
dfs(1);
printf("%d\n",(f[1][K][1][0] + f[1][K][1][1]) % P);
return 0;
}

BZOJ5314 [Jsoi2018]潜入行动 【背包类树形dp】的更多相关文章

  1. [bzoj5314][Jsoi2018]潜入行动_树形背包dp

    潜入行动 bzoj-5314 Jsoi-2018 题目大意:题目链接. 注释:略. 想法: 学长给我们除了一套考试题,三个学长一人一道这是T1. 好吧好吧,傻逼背包...... 复杂度$O(nk)$. ...

  2. [loj2546][JSOI2018]潜入行动(树形DP)

    题目描述 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY 已经联系好了黄金舰队,打算联合所有 JSOIer 抵御外星人的进攻. 在黄金舰队就位之前,JYY 打算事先了解外星人的进攻 ...

  3. BZOJ5314: [Jsoi2018]潜入行动

    BZOJ5314: [Jsoi2018]潜入行动 https://lydsy.com/JudgeOnline/problem.php?id=5314 分析: 裸树形背包,设\(f[x][i][0/1] ...

  4. BZOJ5314: [Jsoi2018]潜入行动 (树形DP)

    题意:一棵树选择恰好k个结点放置监听器 每个监听器只能监听相邻的节点 问能使得所有节点被监听的种类数 题解:反正就是很well-known的树形DP了 至于时间复杂度为什么是nk 不会不学 很好想到四 ...

  5. POJ3345 Bribing FIPA 【背包类树形dp】

    题目链接 POJ 题解 背包树形dp板题 就是读入有点无聊,浪费了很多青春 #include<iostream> #include<cstdio> #include<cm ...

  6. 洛谷$2014$ 选课 背包类树形$DP$

    luogu Sol 阶段和状态都是树形DP板子题,这里只讲一下背包的部分(转移)叭 它其实是一个分组背包模型,具体理解如下: 对于一个结点x,它由它的子结点y转移而来 在子结点y为根的树中可以选不同数 ...

  7. CTSC1998 选课(背包类树形Dp)

    题意: 给出 n 节课的先修课号以及学分(先修课号指的是在学习某节课时先需要学习的课程),求学 m 节课的最大学分. 细节: 1.对于课程 a 其先修课号为 b ,对于课程 b 其先修课号为 c ,则 ...

  8. luogu2014 选课 背包类树形DP

    题目大意:有N门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程a是课程b的先修课即只有学完了课程a,才能学习课程b).一个学生要从这些课程里选择M门课程学习,问他能获得的最大学分是多少? ...

  9. CH5402 选课【树形DP】【背包】

    5402 选课 0x50「动态规划」例题 描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了 N(N≤300) 门的选修课程,每个学生可选课程的数量 M 是 ...

随机推荐

  1. fetch上传文件报错的问题(multipart: NextPart: EOF)

    技术栈 后台: gin(golang) 前端: react+antd+dva 问题 前端这边使用fetch发送http请求的时候,后端解析formData报错: multipart: NextPart ...

  2. IO多路复用(二) -- select、poll、epoll实现TCP反射程序

    接着上文IO多路复用(一)-- Select.Poll.Epoll,接下来将演示一个TCP回射程序,源代码来自于该博文https://www.cnblogs.com/Anker/p/3258674.h ...

  3. Numpy入门笔记第一天

    # 导入包 import numpy as np # 创建一维数组 a = np.arange(5) print "一维numpy数组", a print "数组的类型& ...

  4. 使用PYTHON解析Wireshark的PCAP文件

    PYTHON首先要安装scapy模块 PY3的安装scapy-python3,使用PIP安装就好了,注意,PY3无法使用pyinstaller打包文件,PY2正常 PY2的安装scapy,比较麻烦 f ...

  5. Alpha发布用户使用报告【欢迎来怼】

    目录 用户统计表 部分用户评论截图 用户统计图 总结 一.用户统计表 目前,博客园安卓版的用户已达到11位.为了采集到更加客观公正的用户评价,并没有将团队内部人员的评价统计进来.同时,为了更好地保护用 ...

  6. 01慕课网《vue.js2.5入门》——基础知识

    前端框架 Vue.js2.5 2018-05-12 Vue官网:https://cn.vuejs.org/ 基础语法+案例实践+TodoList+Vue-cli构建工具+TodoList Vue基础语 ...

  7. OGNL动态实现result

    OGNL就是struts.xml文件中的<result>通过get()方法,动态获取action类中的变量 <struts> <package name="de ...

  8. uc浏览器的用户体验

    用户界面: 我认为,uc浏览器的用户界面还是很招人喜欢的,可以很容易让用户找到自己想看的网页.简单快捷. 记住用户的选择: uc在每次用户访问完网站之后都会记住用户访问的高频网站,以便下次用户可以更好 ...

  9. android入门 — Activity启动模式

    1.standard模式 standard模式是系统的默认启动方式,每次激活Activity都会创建Activity,并放在任务栈中. 系统不会在乎活动是否已经存在于返回栈中,每次启动都会创建该活动的 ...

  10. lintcode-420-报数

    420-报数 报数指的是,按照其中的整数的顺序进行报数,然后得到下一个数.如下所示: 1, 11, 21, 1211, 111221, ... 1 读作 "one 1" -> ...