BZOJ5314 [Jsoi2018]潜入行动 【背包类树形dp】
题目链接
题解
设\(f[i][j][0|1][0|1]\)表示\(i\)为根的子树,用了\(j\)个监测器,\(i\)节点是否被控制,\(i\)节点是否放置的方案数
然后转移即可
\(O(nk^2)\)??
用上子树大小来优化就是\(O(nk)\)的
对于子树大小都超过\(k\)的子树,转移\(O(k^2)\),这样的情况最多出现\(\frac{n}{k}\)次
对于子树大小有一个超过\(k\)的子树,没超过\(k\)的那个子树里每个点贡献\(O(k)\),这样的情况对每个点最多出现一次
实现时需要诸多常数优化,才能在\(BZOJ\)上\(AC\),洛谷上开O2随便过
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#include<map>
#define Redge(u) for (res int k = 0,to; k < ed[u].size(); k++)
#define REP(i,n) for (res int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define res register
using namespace std;
const int maxn = 100005,maxm = 105,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,K;
vector<int> ed[maxn];
inline void build(int u,int v){
ed[u].push_back(v);
ed[v].push_back(u);
}
inline void add(int& x,LL y){
x += y; x >= P ? x -= P : 0;
}
int f[maxn][maxm][2][2],fa[maxn],siz[maxn];
LL g[maxn][2][2];
void dfs(int u){
siz[u] = 1; f[u][0][0][0] = f[u][1][0][1] = 1;
Redge(u) if ((to = ed[u][k]) != fa[u]){
fa[to] = u; dfs(to);
for (res int i = 0,lim = min(siz[u],K); i <= lim; i++){
g[i][0][0] = f[u][i][0][0],f[u][i][0][0] = 0;
g[i][0][1] = f[u][i][0][1],f[u][i][0][1] = 0;
g[i][1][0] = f[u][i][1][0],f[u][i][1][0] = 0;
g[i][1][1] = f[u][i][1][1],f[u][i][1][1] = 0;
}
for (res int i = 0,lim = min(siz[u],K); i <= lim; i++)
for (res int j = 0,lim2 = min(siz[to],K); j <= lim2 && i + j <= K; j++){
add(f[u][i + j][0][0],g[i][0][0] * f[to][j][1][0] % P);
add(f[u][i + j][0][1],g[i][0][1] * ((f[to][j][0][0] + f[to][j][1][0])) % P);
add(f[u][i + j][1][0],(g[i][1][0] * ((f[to][j][1][0] + f[to][j][1][1])) + g[i][0][0] * f[to][j][1][1]) % P);
add(f[u][i + j][1][1],(g[i][1][1] * ((1ll * (f[to][j][0][0] + f[to][j][0][1]) + 1ll * (f[to][j][1][0] + f[to][j][1][1])) % P) + g[i][0][1] * (1ll * (f[to][j][0][1] + f[to][j][1][1]))) % P);
}
siz[u] += siz[to];
}
}
int main(){
n = read(); K = read();
for (int i = 1; i < n; i++) build(read(),read());
dfs(1);
printf("%d\n",(f[1][K][1][0] + f[1][K][1][1]) % P);
return 0;
}
BZOJ5314 [Jsoi2018]潜入行动 【背包类树形dp】的更多相关文章
- [bzoj5314][Jsoi2018]潜入行动_树形背包dp
潜入行动 bzoj-5314 Jsoi-2018 题目大意:题目链接. 注释:略. 想法: 学长给我们除了一套考试题,三个学长一人一道这是T1. 好吧好吧,傻逼背包...... 复杂度$O(nk)$. ...
- [loj2546][JSOI2018]潜入行动(树形DP)
题目描述 外星人又双叒叕要攻打地球了,外星母舰已经向地球航行!这一次,JYY 已经联系好了黄金舰队,打算联合所有 JSOIer 抵御外星人的进攻. 在黄金舰队就位之前,JYY 打算事先了解外星人的进攻 ...
- BZOJ5314: [Jsoi2018]潜入行动
BZOJ5314: [Jsoi2018]潜入行动 https://lydsy.com/JudgeOnline/problem.php?id=5314 分析: 裸树形背包,设\(f[x][i][0/1] ...
- BZOJ5314: [Jsoi2018]潜入行动 (树形DP)
题意:一棵树选择恰好k个结点放置监听器 每个监听器只能监听相邻的节点 问能使得所有节点被监听的种类数 题解:反正就是很well-known的树形DP了 至于时间复杂度为什么是nk 不会不学 很好想到四 ...
- POJ3345 Bribing FIPA 【背包类树形dp】
题目链接 POJ 题解 背包树形dp板题 就是读入有点无聊,浪费了很多青春 #include<iostream> #include<cstdio> #include<cm ...
- 洛谷$2014$ 选课 背包类树形$DP$
luogu Sol 阶段和状态都是树形DP板子题,这里只讲一下背包的部分(转移)叭 它其实是一个分组背包模型,具体理解如下: 对于一个结点x,它由它的子结点y转移而来 在子结点y为根的树中可以选不同数 ...
- CTSC1998 选课(背包类树形Dp)
题意: 给出 n 节课的先修课号以及学分(先修课号指的是在学习某节课时先需要学习的课程),求学 m 节课的最大学分. 细节: 1.对于课程 a 其先修课号为 b ,对于课程 b 其先修课号为 c ,则 ...
- luogu2014 选课 背包类树形DP
题目大意:有N门功课,每门课有个学分,每门课有一门或没有直接先修课(若课程a是课程b的先修课即只有学完了课程a,才能学习课程b).一个学生要从这些课程里选择M门课程学习,问他能获得的最大学分是多少? ...
- CH5402 选课【树形DP】【背包】
5402 选课 0x50「动态规划」例题 描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了 N(N≤300) 门的选修课程,每个学生可选课程的数量 M 是 ...
随机推荐
- ABP 框架集成EF批量增加、删除、修改只针对使用mmsql的
AppService 层使用nuget 添加 EFCore.BulkExtensions 引用 using Abp.Application.Services.Dto; using Abp.Domain ...
- web存储机制(localStorage和sessionStorage)
web存储包括两种:sessionStorage 和 localStorage(都是限定在文档源级别,非同源文档间无法共享) 1.sessionStorage 数据放在服务器上(IE不支持) 严格用于 ...
- hdu2061 Treasure the new start, freshmen!(暴力简单题)
Treasure the new start, freshmen! Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/3276 ...
- css布局笔记(一)
布局方式 一列布局 通常固定宽高,用margin:0 auto:居中显示 两列布局 说起两列布局,最常见的就是使用float来实现.float浮动布局的缺点是浮动后会造成文本环绕等效果,以及需要及时清 ...
- Ubuntu常用shell命令
目录 ls cd mkdir mv cp scp rm df du chmod chown chgrp head tail screen apt-get Ubuntu常用shell命令 Ubuntu作 ...
- Nginx高性能优化
#Nginx配置文件优化 worker_processes ; # nginx进程数,建议按照cpu数目来指定,一般为它的倍数. worker_cpu_affinity ; # 为每个进程分配CPU的 ...
- 【bzm-Random CSV Data Set Config】 -jmeter - 文件中随机取参的方法,(插件自带)
文件中随机取参数的方法 Random CSV Data Set Config
- python3 ,AttributeError: module 'tensorflow' has no attribute 'merge_summary'
error:tensorflow有些方法属性被改了, self.summary_writer = tf.train.SummaryWriter(summary_dir)改为:summary.FileW ...
- 原生js和jquey获取窗口宽高,滚动条,鼠标位置总结
JQuery获取浏览器窗口的可视区域高度和宽度,滚动条高度 alert($(window).height()); //浏览器时下窗口可视区域高度 alert($(document).height( ...
- text-align与vertical-align属性的区别
1.text-align属性设置元素在水平方向(x轴)的位置 text-align:left://文本居左 text-align:center://文本居中 text-align:right: //文 ...