题目

也是可以用\(SAM\)来做的

我们发现要求原串不相交,那么就要求在差分序列里不相交并且不相邻

考虑一下\(SAM\),暴力做法自然是对每一个节点统计其所有\(endpos\)的影响

既然这样我们为什么不直接启发式合并加线段树合并分类讨论一下呢

于是可休闲了

我们考虑往一个节点里插入一个新的\(endpos\)会产生什么影响

  1. 对于那些\(x-endpos>=mxlen+1\)的\(x\),我们这样插入显然是会产生\(x\)的贡献

  2. 如果\(x-endpos<mxlen+1\),那么就会产生\(|x-enspos|-1\)的贡献

分情况讨论一下这些贡献就好了

于是同时维护动态开点线段树就好了,合并直接线段树合并

代码

#include<tr1/unordered_map>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#pragma GCC optimize(3)
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("Ofast,no-stack-protector")
const int maxn=6e5+5;
const int R=2e5+5;
const int M=2.2e7;
using namespace std::tr1;
inline int read() {
char c=getchar();int x=0,r=1;
while(c<'0'||c>'9') {if(c=='-') r=-1;c=getchar();}
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return r*x;
}
int n,cnt=1,lst=1,tot,tax[maxn>>1],A[maxn];
unordered_map<int,int> son[maxn];
int len[maxn],fa[maxn];
std::vector<int> pos[maxn];
int a[maxn>>1];
int rt[maxn],l[M],r[M],t[M];
int st[maxn>>1],top;
LL d[M],ans,D,T;
int change(int now,int x,int y,int pos) {
if(!now) {
if(!top) now=++tot;
else now=st[top--];
}
t[now]++,d[now]+=pos;
if(x==y) return now;
int mid=x+y>>1;
if(pos<=mid) l[now]=change(l[now],x,mid,pos);
else r[now]=change(r[now],mid+1,y,pos);
return now;
}
LL ask(int now,int x,int y,int lx,int ry) {
if(!now||x>y) return 0;
if(x<=lx&&y>=ry) return t[now];
int mid=lx+ry>>1;
if(y<=mid) return ask(l[now],x,y,lx,mid);
if(x>mid) return ask(r[now],x,y,mid+1,ry);
return ask(l[now],x,y,lx,mid)+ask(r[now],x,y,mid+1,ry);
}
void query(int now,int x,int y,int lx,int ry) {
if(!now||x>y) return;
if(x<=lx&&y>=ry) {T+=t[now],D+=d[now];return;}
int mid=lx+ry>>1;
if(x<=mid) query(l[now],x,y,lx,mid);
if(y>=mid+1) query(r[now],x,y,mid+1,ry);
}
inline void ins(int c,int k) {
int p=++cnt,f=lst;lst=p;
len[p]=len[f]+1;
pos[p].push_back(k);rt[p]=change(rt[p],1,n-1,k);
while(f&&!son[f][c]) son[f][c]=p,f=fa[f];
if(!f) {fa[p]=1;return;}
int x=son[f][c];
if(len[f]+1==len[x]) {fa[p]=x;return;}
int y=++cnt;len[y]=len[f]+1;
fa[y]=fa[x],fa[x]=fa[p]=y;son[y]=son[x];
while(f&&son[f][c]==x) son[f][c]=y,f=fa[f];
}
int merge(int a,int b,int x,int y) {
if(!a||!b) return a+b;
if(x==y) {t[a]+=t[b];d[a]+=d[b];}
int mid=x+y>>1;
l[a]=merge(l[a],l[b],x,mid);r[a]=merge(r[a],r[b],mid+1,y);
t[a]=t[l[a]]+t[r[a]],d[a]=d[l[a]]+d[r[a]];
return a;
}
int main() {
n=read();
for(re int i=1;i<=n;++i) a[i]=read();
for(re int i=1;i<n;++i) ins(a[i+1]-a[i],i);
for(re int i=1;i<=cnt;++i) tax[len[i]]++;
for(re int i=1;i<n;i++) tax[i]+=tax[i-1];
for(re int i=cnt;i>=0;--i) A[tax[len[i]]--]=i;
for(re int i=cnt;i;--i) {
int x=A[i],F=fa[x];
if(pos[x].size()>pos[F].size()) std::swap(pos[x],pos[F]),std::swap(rt[x],rt[F]);
for(re int j=0;j<pos[x].size();j++) {
int now=pos[x][j];
ans+=ask(rt[F],now+1+len[F],n-1,1,n-1)*(LL)len[F];
ans+=ask(rt[F],1,now-len[F]-1,1,n-1)*(LL)len[F]; T=D=0;query(rt[F],now-len[F],now-1,1,n-1);
ans+=T*((LL)now-1)-D; T=D=0;query(rt[F],now+1,now+len[F],1,n-1);
ans+=D-T*((LL)now+1); pos[F].push_back(now);
}
rt[F]=merge(rt[F],rt[x],1,n-1);
}
ans+=(LL)(n-1)*n/2ll;
printf("%lld\n",ans);
return 0;
}

【LGP5161】WD与数列的更多相关文章

  1. luogu P5161 WD与数列 SAM 线段树合并 启发式合并

    LINK:WD与数列 这道题可谓妙绝 我明白了一个增量统计的原理. 原本的想法是:差分之后 显然长度为1的单独统计 长度为2的以及更多就是字符串之间的匹配问题了. 对差分序列建立SAM 由于第一个是一 ...

  2. 【LUOGU???】WD与数列 sam 启发式合并

    题目大意 给你一个字符串,求有多少对不相交且相同的子串. 位置不同算多对. \(n\leq 300000\) 题解 先把后缀树建出来. DFS 整棵树,维护当前子树的 right 集合. 合并两个集合 ...

  3. [Luogu5161]WD与数列(后缀数组/后缀自动机+线段树合并)

    https://blog.csdn.net/WAautomaton/article/details/85057257 解法一:后缀数组 显然将原数组差分后答案就是所有不相交不相邻重复子串个数+n*(n ...

  4. P5161 WD与数列(后缀自动机+线段树合并)

    传送门 没想出来→_→ 首先不难看出要差分之后计算不相交也不相邻的相等子串对数,于是差分之后建SAM,在parent树上用线段树合并维护endpos集合,然后用启发式合并维护一个节点对另一个节点的贡献 ...

  5. SAM(后缀自动机)总结

    “写sam是肯定会去写的,这样才学的了字符串,后缀数组又不会用 >ω<, sam套上数据结构的感觉就像回家一样! 里面又能剖分又能线段树合并,调试又好调,我爱死这种写法了 !qwq” SA ...

  6. C#求斐波那契数列第30项的值(递归和非递归)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  7. BZOJ1500[NOI2005]维修数列

    Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目.第2行包含N个数字,描述初始时的数列.以下M行,每行一 ...

  8. PAT 1049. 数列的片段和(20)

    给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1 ...

  9. 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

    对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...

随机推荐

  1. 【Java学习经历系列-1】19岁的我,没遇见生命中的她,却遇见了java

    [写在前面]正直青春年少的你,遇到了你的她了吗?还是你也和我们今天的主人公一样,在最美好的年级,正在为你的初衷努力着,坚持着,奔波着..... 作者:李伟   我的黑客时代 01 大学专业是电子信息工 ...

  2. SSM框架文件远程服务器下载

    1.首先你必须要建立连接 获取URL的输入流 2.之后就是文件读取和写入了 3.还有就是设置响应头,响应码等 代码 @RequestMapping("/fileDownLoad") ...

  3. 高并发第二弹:并发概念及内存模型(JMM)

    高并发第二弹:并发概念及内存模型(JMM) 感谢 : 深入Java内存模型 http://www.importnew.com/10589.html, cpu缓存一致性 https://www.cnbl ...

  4. Redis-概述

    Redis支持的类型: String,List,Map,Set,Sorted set Redis的持久化: 1.Redis DataBase (RDB): RDB是在某个时间点将数据写入一个临时文件, ...

  5. 51NOD1847:奇怪的数学题

    传送门 Sol 设 \(f(d)\) 表示 \(d\) 所有约数中第二大的,\(low_d\) 表示 \(d\) 的最小质因子 \[f(d)=\frac{d}{low_d}\] 那么 \[\sum_{ ...

  6. redux、immutablejs和mobx性能对比(三)

    四.我的结论 通过第三部分的数据数据分析,我觉得我们可以得到以下结论: 无论是在开发环境还是测试环下页面的首次加载速度结果都是:redux>immutablejs>mobx,但是他们之间的 ...

  7. svg动画之日出

    效果分析 一个太阳,从底部升起来,天空由黑变蓝.那么要画的东西确定为三个:1.太阳(圆形)2.太阳光芒 3.天空 代码如下 <!--画太阳--> <svg width="6 ...

  8. json 对象里面含有 =的解决办法

    今天通过restful 调用接口的时候,遇到这样的问题,通过接口返回的数据如下: { "code": 0, "message": "成功", ...

  9. Ubuntu下搭建Hbase单机版并实现Java API访问

    工具:Ubuntu12.04 .Eclipse.Java.Hbase 1.在Ubuntu上安装Eclipse,可以在Ubuntu的软件中心直接安装,也可以通过命令安装,第一次安装失败了,又试了一次,开 ...

  10. security权限控制

    目录 前言 数据库和dimain 静态页面 配置文件 web.xml引入 service校验方法 用户名的获取 不同角色访问控制权限 jsp页面 后台 前言 spring自带角色权限控制框架 用户-角 ...