【bzoj3456】城市规划 容斥原理+NTT+多项式求逆
题目描述
求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1).
输入
仅一行一个整数n(<=130000)
输出
仅一行一个整数, 为方案数 mod 1004535809.
样例输入
3
样例输出
4
题解
容斥原理+NTT+多项式求逆
设 $f_i$ 表示 $i$ 个点的简单无向连通图的数目,$g_i$ 表示 $i$ 个点的简单无向图的数目。
根据定义得 $g_i=2^{\frac{n(n-1}2}$ 。
对于 $f_i$ ,考虑容斥,用 $g_i$ 减去不连通的方案数。枚举不连通图中1号点所在连通块大小 $j$ ,则有:
$$f_i=g_i-\sum\limits_{j=1}^{i-1}C_{i-1}^{j-1}f_jg_{i-j}$$
将组合数展开,得:
$$f_i=g_i-\sum\limits_{j=1}^{i-1}\frac{(i-1)!}{(j-1)!(i-j)!}f_jg_{i-j}$$
两边同时除以 $(i-1)!$ ,整理得:
$$\frac{f_i}{(i-1)!}=\sum\limits_{j=1}^{i-1}\frac{f_j}{(j-1)!}\frac{g_{i-j}}{(i-j)!}$$
设:
$$F(x)=\sum\limits_{i=1}^{\infty}\frac{f_i}{(i-1)!} \\ G(x)=\sum\limits_{i=1}^{\infty}\frac{g_i}{(i-1)!} \\ H(x)=\sum\limits_{i=1}^{\infty}\frac{g_i}{i!}$$
注意到 $F(x)$ 、$H(x)$ 的常数项均为0,因此后面的那个式子相当于 $\sum\limits_{j=0}^iF(x)[j]H(x)[i-j]$ ,是一个卷积的形式。
因此有:
$$F(x)=G(x)-F(x)\times H(x)$$
化简得:
$$F(x)=\frac{G(x)}{H(x)+1}$$
剩下的就好办了,根据定义求出 $G(x)$ 和 $H(x)+1$ ,使用多项式求逆求出 $H(x)+1$ 的逆,再与 $G(x)$ 求乘法即可得到 $F(x)$ 。
最后的答案就是 $F(x)[n]\times(n-1)!$ 。
时间复杂度 $O(n\log n)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 262200
#define mod 1004535809
using namespace std;
typedef long long ll;
ll A[N] , B[N] , C[N] , t[N] , fac[N >> 1];
inline ll pow(ll x , ll y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
void ntt(ll *a , int n , int flag)
{
int i , j , k;
for(i = k = 0 ; i < n ; i ++ )
{
if(i > k) swap(a[i] , a[k]);
for(j = n >> 1 ; (k ^= j) < j ; j >>= 1);
}
for(k = 2 ; k <= n ; k <<= 1)
{
ll wn = pow(3 , (mod - 1) / k);
if(flag == -1) wn = pow(wn , mod - 2);
for(i = 0 ; i < n ; i += k)
{
ll w = 1 , t;
for(j = i ; j < i + (k >> 1) ; j ++ , w = w * wn % mod)
t = w * a[j + (k >> 1)] % mod , a[j + (k >> 1)] = (a[j] - t + mod) % mod , a[j] = (a[j] + t) % mod;
}
}
if(flag == -1)
{
k = pow(n , mod - 2);
for(i = 0 ; i < n ; i ++ ) a[i] = a[i] * k % mod;
}
}
void inv(ll *a , ll *b , int n)
{
if(n == 1)
{
b[0] = 1;
return;
}
int i;
inv(a , b , n >> 1);
memcpy(t , a , sizeof(ll) * n);
ntt(t , n << 1 , 1);
ntt(b , n << 1 , 1);
for(i = 0 ; i < n << 1 ; i ++ ) b[i] = b[i] * (2 - t[i] * b[i] % mod + mod) % mod;
ntt(b , n << 1 , -1);
memset(b + n , 0 , sizeof(ll) * n);
}
int main()
{
int n , i , len = 1;
scanf("%d" , &n);
fac[0] = A[0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
fac[i] = fac[i - 1] * i % mod;
A[i] = pow(2 , (ll)i * (i - 1) / 2) * pow(fac[i] , mod - 2) % mod;
B[i] = pow(2 , (ll)i * (i - 1) / 2) * pow(fac[i - 1] , mod - 2) % mod;
}
while(len <= n) len <<= 1;
inv(A , C , len);
ntt(B , len , 1);
ntt(C , len , 1);
for(i = 0 ; i < len ; i ++ ) B[i] = B[i] * C[i] % mod;
ntt(B , len , -1);
printf("%lld\n" , B[n] * fac[n - 1] % mod);
return 0;
}
【bzoj3456】城市规划 容斥原理+NTT+多项式求逆的更多相关文章
- 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)
3456: 城市规划 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 658 Solved: 364 Description 刚刚解决完电力网络的问题 ...
- [bzoj3456] 城市规划 [递推+多项式求逆]
题面 bzoj权限题面 离线题面 思路 orz Miskcoo ! 先考虑怎么算这个图的数量 设$f(i)$表示$i$个点的联通有标号无向图个数,$g(i)$表示$n$个点的有标号无向图个数(可以不连 ...
- bzoj 3456: 城市规划【NTT+多项式求逆】
参考:http://blog.miskcoo.com/2015/05/bzoj-3456 首先推出递推式(上面的blog讲的挺清楚的),大概过程是正难则反,设g为n个点的简单(无重边无自环)无向图数目 ...
- [BZOJ3456]城市规划:DP+NTT+多项式求逆
写在前面的话 昨天听吕老板讲课,数数题感觉十分的神仙. 于是,ErkkiErkko这个小蒟蒻也要去学数数题了. 分析 Miskcoo orz 带标号无向连通图计数. \(f(x)\)表示\(x\)个点 ...
- BZOJ1042 HAOI2008硬币购物(任意模数NTT+多项式求逆+生成函数/容斥原理+动态规划)
第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以 ...
- BZOJ 3456 城市规划 ( NTT + 多项式求逆 )
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...
- bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...
- P4233-射命丸文的笔记【NTT,多项式求逆】
正题 题目链接:https://www.luogu.com.cn/problem/P4233 题目大意 随机选择一条有哈密顿回路的\(n\)个点的竞赛图,求选出图的哈密顿回路的期望个数. 对于每个\( ...
- NTT+多项式求逆+多项式开方(BZOJ3625)
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...
随机推荐
- 20145226夏艺华 《Java程序设计》第9周学习总结
教材学习内容总结 学习目标 了解JDBC架构 掌握JDBC架构 掌握反射与ClassLoader 了解自定义泛型和自定义枚举 会使用标准注解 第16章 整合数据库 16.1 JDBC入门 (一)JDB ...
- Spring MVC接受参数的注解
一.Request请求发出后,Headler Method是如何接收处理数据的? Headler Method绑定常用的参数注解,根据处理request的不同部分分为四类: A.处理 Request ...
- 北京Uber优步司机奖励政策(4月10日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- C# VS,连接到oracle 报要升级到8.多少版本的错
1:确定服务器的oracle版本 2:本地的客户端版本要和服务器一致 3:操作系统位数要一致
- Appium+python 自动发送邮件(2)(转)
(原文:https://www.cnblogs.com/fancy0158/p/10056418.html) 移动端执行完测试case之后,通过邮件自动发送测试报告.大体流程如下: 1.通过unitt ...
- sql server 批量备份数据库
很多时候,我们都需要将数据库进行备份,当服务器上数据库较多时,不可能一个数据库创建一个定时任务进行备份,这时,就需要进行批量的数据库备份操作,好了,废话不多说,具体实现语句如下: --开启文件夹权限 ...
- Ubuntu 安装python后,安装python-dev
1.通常情况下: sudo apt install python-dev 或者 在 sudo apt install python 命令下安装应该也附带了 python-dev 上述 pyhthon ...
- 高可用Kubernetes集群-12. 部署kubernetes-ingress
参考文档: Github:https://github.com/kubernetes/ingress-nginx Kubernetes ingress:https://kubernetes.io/do ...
- day06 再谈编码 and 作业讲解
1. 小数据池,(其他语言又叫常量池) id() 查看变量的内存地址 is和== is 判断内存地址是否一致 == 判断内容是否一致 小数据池的作用: 为了快速的创建字符串对象, 可以减少内存的浪费 ...
- Tensorflow、Pytorch、Keras的多GPU使用
Tensorflow.Pytorch.Keras的多GPU的并行操作 方法一 :使用深度学习工具提供的 API指定 1.1 Tesorflow tensroflow指定GPU的多卡并行的时候,也是可以 ...