hdu2196 Computer【树形DP】【换根法】
Computer
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 34390 Accepted Submission(s): 5383
Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.
1 1
2 1
3 1
1 1
2
3
4
4
题意:
一棵有n个节点的树,有权边。问每个节点到其他节点的最远距离分别是多少。
思路:
如果固定一个节点,那么dfs找最远的距离就可以了。用dp[i]表示以i为根的子树中,i可到的最远距离。
对于任意一个节点i,他到达的最远节点有可能在子树中,也有可能不在子树中。所以我们分别找到子树中的最远距离和不在子树中的最远距离。
dfs1就是用dp存储了在子树中的最远距离。
dfs2就是把当前节点换到了根的位置,用f存储不在子树中的最远距离。那么他到他子树节点的距离是变短了的就不用管了。
把i换成根,把i的父亲father换下去,如果i在i的父亲这棵子树的最长路径上。father换下去之后,就要考虑原本以father为根的子树的第二长路径。
如果i不在father的最长路径上,那就是在f和dp中找大的加上当前路径长度。
//#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<vector>
#include<map>
#include<set> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; const int maxn = ;
int head[maxn], dp[maxn], f[maxn], second[maxn], longest[maxn];
struct node{
int v;
int nxt;
int weight;
}edge[maxn * ];
int n, cnt; void addedge(int u, int v, int w)
{
edge[cnt].v = v;
edge[cnt].weight = w;
edge[cnt].nxt = head[u];
head[u] = cnt++;
edge[cnt].v = u;
edge[cnt].weight = w;
edge[cnt].nxt = head[v];
head[v] = cnt++;
} void dfs1(int rt, int fa)
{
for(int i = head[rt]; i != -; i = edge[i].nxt){
int son = edge[i].v;
if(son == fa)continue;
dfs1(son, rt);
//dp[rt] = max(dp[rt], dp[son] + edge[i].weight);
if(dp[son] + edge[i].weight > dp[rt]){
longest[rt] = son;
second[rt] = max(second[rt], dp[rt]);
dp[rt] = dp[son] + edge[i].weight;
}
else if(second[rt] < dp[son] + edge[i].weight){
second[rt] = dp[son] + edge[i].weight;
}
}
} void dfs2(int rt, int fa)
{
for(int i = head[rt]; i != -; i = edge[i].nxt){
int son = edge[i].v;
if(son == fa)continue;
if(longest[rt] == son)f[son] = max(f[rt], second[rt]) + edge[i].weight;
else f[son] = max(f[rt], dp[rt]) + edge[i].weight;
dfs2(son, rt);
}
} int main(){
while(scanf("%d", &n) != EOF){
cnt = ;
memset(head, -, sizeof(head));
for(int i = ; i <= n; i++){
int u, w;
scanf("%d%d", &u, &w);
addedge(u, i, w);
}
memset(dp, , sizeof(dp));
memset(second, , sizeof(second));
memset(longest, , sizeof(longest));
memset(f, , sizeof(f));
dfs1(, ); dfs2(, );
//f[1] = dp[1];
for(int i = ; i <= n; i++){
printf("%d\n", max(dp[i], f[i]));
}
}
return ;
}
hdu2196 Computer【树形DP】【换根法】的更多相关文章
- bzoj 3743 [Coci2015]Kamp——树形dp+换根
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...
- poj3585 Accumulation Degree[树形DP换根]
思路其实非常简单,借用一下最大流求法即可...默认以1为根时,$f[x]$表示以$x$为根的子树最大流.转移的话分两种情况,一种由叶子转移,一种由正常孩子转移,判断一下即可.换根的时候由頂向下递推转移 ...
- 树形dp换根,求切断任意边形成的两个子树的直径——hdu6686
换根dp就是先任取一点为根,预处理出一些信息,然后在第二次dfs过程中进行状态的转移处理 本题难点在于任意割断一条边,求出剩下两棵子树的直径: 设割断的边为(u,v),设down[v]为以v为根的子树 ...
- poj3585 Accumulation Degree(树形dp,换根)
题意: 给你一棵n个顶点的树,有n-1条边,每一条边有一个容量z,表示x点到y点最多能通过z容量的水. 你可以任意选择一个点,然后从这个点倒水,然后水会经过一些边流到叶节点从而流出.问你最多你能倒多少 ...
- [题解](树形dp/换根)小x游世界树
2. 小x游世界树 (yggdrasi.pas/c/cpp) [问题描述] 小x得到了一个(不可靠的)小道消息,传说中的神岛阿瓦隆在格陵兰海的某处,据说那里埋藏着亚瑟王的宝藏,这引起了小x的好奇,但当 ...
- HDU2196 - Computer(树形DP)
题目大意 给定一颗n个结点的树,编号为1~n,要求你求出每个结点能到达的最长路径 题解 用动态规划解决的~~~~把1 当成树根,这样就转换成有根树了.我们可以发现,对于每个结点的最长路,要么是从子树得 ...
- cf219d 基础换根法
/*树形dp换根法*/ #include<bits/stdc++.h> using namespace std; #define maxn 200005 ]; int root,n,s,t ...
- 题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)
写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换 ...
- poj 3585 Accumulation Degree(二次扫描和换根法)
Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...
- poj3585树最大流——换根法
题目:http://poj.org/problem?id=3585 二次扫描与换根法,一次dfs求出以某个节点为根的相关值,再dfs遍历一遍树,根据之前的值换根取最大值为答案. 代码如下: #incl ...
随机推荐
- imx6 spi分析
/************************************************************************** *本文主要跟踪imx6 spi设备和驱动的注册过 ...
- map正序、逆序排序
一.按 key 排序 1.map顺序排序(小的在前,大的在后): map<float,string,less<float> > m_aSort;//已float从小到大排序 2 ...
- nodejs基础 -- 回调函数
Node.js 异步编程的直接体现就是回调. 异步编程依托于回调来实现,但不能说使用了回调后程序就异步化了. 回调函数在完成任务后就会被调用,Node 使用了大量的回调函数,Node 所有 API 都 ...
- mysql 从sql存储文件恢复数据库乱码
场景一: 一台电脑上导出的sql文件到另一台电脑上恢复数据库,汉字全部是乱码,然后可能还有部分数据提示超长. 场景二: 拿到的sql文件不是原始的导出sql文件,只有表结构和表数据,出现的问题和场景一 ...
- 转载:MySQL数据库INSERT、UPDATE、DELETE以及REPLACE语句的用法详解
转自:http://www.jb51.net/article/39199.htm 本篇文章是对MySQL数据库INSERT.UPDATE.DELETE以及REPLACE语句的用法进行了详细的分析介绍, ...
- c#后台访问接口
直接上代码 后台代码 //接口地址string url = "http://spherefg.topsmoon.com:6666/restapi/Comment/SubmitCommentF ...
- JavaSE(八)之Map总结
上一篇是总结了Collection接口的各种实现类,这一篇我将分享的是Map的总结,希望大家点评! 一.Map接口 1.1.为什么Collection不能满足集合的所有功能? Collection接口 ...
- unity3d多个版本共存
用4.3打开两个低版本的unity工程,都报错.... 用低版本打开正常,希望Unity3D版本兼容性越来越好吧. 参考:http://blog.csdn.net/anyuanlzh/article/ ...
- Oracle中的三种循环(For、While、Loop)
from:http://jingyan.baidu.com/article/c275f6ba38036ae33c756773.html GOTO用法,以下是SQL源码: DECLARE x numb ...
- Ext3.4--Gridpanel
Ext.onReady(function () { var sm = new Ext.grid.RowSelectionModel({singleSelect:true})//设置单选 //var s ...