hdu2196 Computer【树形DP】【换根法】
Computer
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 34390 Accepted Submission(s): 5383
Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.
1 1
2 1
3 1
1 1
2
3
4
4
题意:
一棵有n个节点的树,有权边。问每个节点到其他节点的最远距离分别是多少。
思路:
如果固定一个节点,那么dfs找最远的距离就可以了。用dp[i]表示以i为根的子树中,i可到的最远距离。
对于任意一个节点i,他到达的最远节点有可能在子树中,也有可能不在子树中。所以我们分别找到子树中的最远距离和不在子树中的最远距离。
dfs1就是用dp存储了在子树中的最远距离。
dfs2就是把当前节点换到了根的位置,用f存储不在子树中的最远距离。那么他到他子树节点的距离是变短了的就不用管了。
把i换成根,把i的父亲father换下去,如果i在i的父亲这棵子树的最长路径上。father换下去之后,就要考虑原本以father为根的子树的第二长路径。
如果i不在father的最长路径上,那就是在f和dp中找大的加上当前路径长度。
//#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<vector>
#include<map>
#include<set> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; const int maxn = ;
int head[maxn], dp[maxn], f[maxn], second[maxn], longest[maxn];
struct node{
int v;
int nxt;
int weight;
}edge[maxn * ];
int n, cnt; void addedge(int u, int v, int w)
{
edge[cnt].v = v;
edge[cnt].weight = w;
edge[cnt].nxt = head[u];
head[u] = cnt++;
edge[cnt].v = u;
edge[cnt].weight = w;
edge[cnt].nxt = head[v];
head[v] = cnt++;
} void dfs1(int rt, int fa)
{
for(int i = head[rt]; i != -; i = edge[i].nxt){
int son = edge[i].v;
if(son == fa)continue;
dfs1(son, rt);
//dp[rt] = max(dp[rt], dp[son] + edge[i].weight);
if(dp[son] + edge[i].weight > dp[rt]){
longest[rt] = son;
second[rt] = max(second[rt], dp[rt]);
dp[rt] = dp[son] + edge[i].weight;
}
else if(second[rt] < dp[son] + edge[i].weight){
second[rt] = dp[son] + edge[i].weight;
}
}
} void dfs2(int rt, int fa)
{
for(int i = head[rt]; i != -; i = edge[i].nxt){
int son = edge[i].v;
if(son == fa)continue;
if(longest[rt] == son)f[son] = max(f[rt], second[rt]) + edge[i].weight;
else f[son] = max(f[rt], dp[rt]) + edge[i].weight;
dfs2(son, rt);
}
} int main(){
while(scanf("%d", &n) != EOF){
cnt = ;
memset(head, -, sizeof(head));
for(int i = ; i <= n; i++){
int u, w;
scanf("%d%d", &u, &w);
addedge(u, i, w);
}
memset(dp, , sizeof(dp));
memset(second, , sizeof(second));
memset(longest, , sizeof(longest));
memset(f, , sizeof(f));
dfs1(, ); dfs2(, );
//f[1] = dp[1];
for(int i = ; i <= n; i++){
printf("%d\n", max(dp[i], f[i]));
}
}
return ;
}
hdu2196 Computer【树形DP】【换根法】的更多相关文章
- bzoj 3743 [Coci2015]Kamp——树形dp+换根
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3743 树形dp+换根. “从根出发又回到根” 减去 “mx ” . 注意dfsx里真的要改那 ...
- poj3585 Accumulation Degree[树形DP换根]
思路其实非常简单,借用一下最大流求法即可...默认以1为根时,$f[x]$表示以$x$为根的子树最大流.转移的话分两种情况,一种由叶子转移,一种由正常孩子转移,判断一下即可.换根的时候由頂向下递推转移 ...
- 树形dp换根,求切断任意边形成的两个子树的直径——hdu6686
换根dp就是先任取一点为根,预处理出一些信息,然后在第二次dfs过程中进行状态的转移处理 本题难点在于任意割断一条边,求出剩下两棵子树的直径: 设割断的边为(u,v),设down[v]为以v为根的子树 ...
- poj3585 Accumulation Degree(树形dp,换根)
题意: 给你一棵n个顶点的树,有n-1条边,每一条边有一个容量z,表示x点到y点最多能通过z容量的水. 你可以任意选择一个点,然后从这个点倒水,然后水会经过一些边流到叶节点从而流出.问你最多你能倒多少 ...
- [题解](树形dp/换根)小x游世界树
2. 小x游世界树 (yggdrasi.pas/c/cpp) [问题描述] 小x得到了一个(不可靠的)小道消息,传说中的神岛阿瓦隆在格陵兰海的某处,据说那里埋藏着亚瑟王的宝藏,这引起了小x的好奇,但当 ...
- HDU2196 - Computer(树形DP)
题目大意 给定一颗n个结点的树,编号为1~n,要求你求出每个结点能到达的最长路径 题解 用动态规划解决的~~~~把1 当成树根,这样就转换成有根树了.我们可以发现,对于每个结点的最长路,要么是从子树得 ...
- cf219d 基础换根法
/*树形dp换根法*/ #include<bits/stdc++.h> using namespace std; #define maxn 200005 ]; int root,n,s,t ...
- 题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)
写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换 ...
- poj 3585 Accumulation Degree(二次扫描和换根法)
Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...
- poj3585树最大流——换根法
题目:http://poj.org/problem?id=3585 二次扫描与换根法,一次dfs求出以某个节点为根的相关值,再dfs遍历一遍树,根据之前的值换根取最大值为答案. 代码如下: #incl ...
随机推荐
- 第三百一十八节,Django框架,信号
第三百一十八节,Django框架,信号 Django中提供了“信号调度”,用于在框架执行操作时解耦.通俗来讲,就是一些动作发生的时候,信号允许特定的发送者去提醒一些接受者. 也就是当程序有指定动作时, ...
- Qt模态与非模态
模态对话框就是指在子对话框弹出时,焦点被强行集中于该子对话框,子对话框不关闭,用户将无法操作其他的窗口.非模态相反,用户仍然可以操作其他的窗口,包括该子对话框的父对话框. 如果从线程角度来讲,模态对话 ...
- 配置OpenGL的开发环境
OpenGL库资源下载 http://pan.baidu.com/s/1ntVsReL 环境搭建 将下载好的文件进行解压,可以得到后缀为.h..lib..dll三类文件,对这三类文件作如下处理: 将所 ...
- PHP生成UTF-8编码的CSV文件用Excel打开乱码的解决办法
什么是BOM? 在UCS 编码中有一个叫做”ZERO WIDTH NO-BREAK SPACE”的字符,它的编码是FEFF.而FFFE在UCS中是不存在的字符,所以不应该出现在实际传输中.UCS规范建 ...
- 利用jstack 找到异常代码
1.top找出耗时pid进程或ps -ef |grep xxx 找出pid 2.ps p 3036 -L -o pcpu,pid,tid,time,tname,cmd 3036为pid 3.prin ...
- jQuery操作属性和样式详解
我们可以使用 javascript 中的getAttribute和setAttribute来操作元素的"元素属性".在 jQuery 中给你提供了attr()包装集函数, 能够同时 ...
- VC++ ToolTip的简单使用
1.在基于对话框的MFC应用程序中使用Tooltip,首先在Dlg类的头文件中定义一个变量: CToolTipCtrl m_iToolTips; 2.在Dlg类的OnInitDialog中添加代码: ...
- Phpcms V9当前栏目及所有二级栏目下内容调用标签
在二级栏目列表页调用: <!--* 获取子栏目* @param $parentid 父级id* @param $type 栏目类型* @param $self 是否包含本身 0为不包含* @pa ...
- swift - 利用UIDatePicker实现定时器的效果
效果图如下: 可以通过UIDatePicker调整倒计时的时间,然后点击UIButton开始倒计时,使用NSTimer进行倒计时的时间展示,我是声明了一个label也进行了标记, 然后点击按钮开始倒计 ...
- Swift学习笔记之--类和对象
通过在 class后接类名称来创建一个类.在类里边声明属性与声明常量或者变量的方法是相同的,唯一的区别的它们在类环境下.同样的,方法和函数的声明也是相同的写法 class Shape { func s ...