1127: [POI2008]KUP
1127: [POI2008]KUP
https://lydsy.com/JudgeOnline/problem.php?id=1127
分析:
如果存在一个点大于等于k,小于等于2k的话,直接输出。
否则把点分成两类,一类是<k的,另一类是大于2k的,大于2k的一定没用。
然后找一个全部由小于2k的点中组成一个的矩形(悬线法),这个矩形有三种情况:1、<k,没用;2、大于等于k,小于等于2k,输出;3、大于2k,它的子矩阵中一定存在一个合法的矩阵(因为每个元素都是<k的,所以增加一个元素不可能直接使面积从小于k变成大于等于2k)。
考虑如何对一个大于等于2k的矩形找到它的合法的子矩阵。每次删掉一行或者一列一定可以找到。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#include<cstdlib>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ; LL sum[N][N], k;
int a[N][N], U[N][N], L[N], R[N], n; void pd(int u,int d,int l,int r) {
if (u > d || l > r) return ;
LL now = sum[d][r] - sum[d][l - ] - sum[u - ][r] + sum[u - ][l - ];
if (now < k) return ;
if (now >= k && now <= k + k) {
printf("%d %d %d %d",l, u, r, d); exit();
}
if (d - u > r - l) {
pd(u + , d, l, r); pd(u, d - , l, r);
pd(u, d, l + , r); pd(u, d, l, r - );
}
else {
pd(u, d, l + , r); pd(u, d, l, r - );
pd(u + , d, l, r); pd(u, d - , l, r);
}
} int main() {
k = read(), n = read();
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j) {
a[i][j] = read();
sum[i][j] = a[i][j] + sum[i][j - ] + sum[i - ][j] - sum[i - ][j - ];
if (a[i][j] >= k && a[i][j] <= k + k) { printf("%d %d %d %d\n",j, i, j, i); return ; }
}
for (int i = ; i <= n; ++i)
for (int j = ; j <= n; ++j)
U[i][j] = a[i][j] <= k + k ? U[i - ][j] + : ;
for (int i = ; i <= n; ++i) L[i] = , R[i] = n + ;
for (int i = ; i <= n; ++i) {
int last = ;
for (int j = ; j <= n; ++j) {
if (a[i][j] <= k + k) L[j] = max(L[j], last + );
else last = j, L[j] = ;
}
last = n + ;
for (int j = n; j >= ; --j) {
if (a[i][j] <= k + k) R[j] = min(R[j], last - );
else last = j, R[j] = n + ;
}
for (int j = ; j <= n; ++j)
if (U[i][j] && L[j] >= && R[j] <= n) pd(i - U[i][j] + , i, L[j], R[j]);
}
puts("NIE");
return ;
}
1127: [POI2008]KUP的更多相关文章
- bzoj 1127 [POI2008]KUP——思路(悬线法)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1127 大于2*K的视为不能选的“坏点”.有单个格子满足的就直接输出. 剩下的都是<K的 ...
- [BZOJ] 1127: [POI2008]KUP
似曾相识的感觉 考虑另一个判断问题,给定一个k,问这个k是否可行 存在矩形和\(sum>2k\),则该矩阵不对判定做出贡献 存在矩形和\(sum\in [k,2k]\),则我们找到了一个解 于是 ...
- [BZOJ1127][POI2008] KUP子矩阵
Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...
- bzoj1127: [POI2008]KUP
Description 给一个n*n的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个n*n的地图 Output 输出矩形的左 ...
- bzoj1127[POI2008]KUP 悬线法
Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 485 Solved: 174[Submit][Status][D ...
- [POI2008]KUP
Description 给一个\(n\times n\)的地图,每个格子有一个价格,找一个矩形区域,使其价格总和位于[k,2k] Input 输入k n(n<2000)和一个\(n\times ...
- 【BZOJ-1127】KUP 悬线法 + 贪心
1127: [POI2008]KUP Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 317 Solved: 11 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- bzoj 1127 KUP —— 最大子矩形+答案构造
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1127 首先,把权值 > 2*k 的点作为“坏点”,然后在图中用悬线法找权值最大的子矩形 ...
随机推荐
- android中反射技术使用实例
在计算机科学领域.反射是指一类应用,它们能够自描写叙述和自控制.也就是说,这类应用通过採用某种机制来实现对自己行为的描写叙述(self-representation)和监測(examination), ...
- 3109. [CQOI2013]新数独【DFS】
Description Input 输入一共15行,包含一个新数独的实例.第奇数行包含左右方向的符号(<和>),第偶数行包含上下方向的符号(^和v). Output 输出包含9行,每行 ...
- stylus的用法
参考链接:预处器的对比——Sass.LESS和Stylus http://www.w3cplus.com/css/sass-vs-less-vs-stylus-a-preprocessor-sho ...
- 使用iframe标签隐藏CSRF代码
index.html <iframe src="1.html" width="0" height="0"></iframe ...
- UICollectionViewFlowLayout 的 estimatedItemSize 属性
这个是collectionView的item 自适应fram的属性, 介绍在网上很多, 但是用法没有太多的举例, 其实这个属性的使用也很简单, 随便给它的不为CGSizeZero的值就好, 但是, 但 ...
- 框架 Hibernate
Hibernate 在test01右键新建其他找到hibernate文件夹下的Hibernate Configuration File(cfg.xml) <?xml version=" ...
- VS Code 常用插件列表
插件列表 Auto Close Tag 自动闭合HTML标签 Auto Rename Tag 修改HTML标签时,自动修改匹配的标签 Bookmarks 添加行书签 Can I Use HTML5.C ...
- iOS 数据安全、数据加密传输
近期接到一个新需求:APP企业版需要接入热更新功能. 热更新需要下发补丁脚本, 脚本下发过程中需要保证脚本传输安全,且需要避免中间人攻击. 需要用到数据加密传输方面的知识,以下是我设计的加密解密流程: ...
- Extjs 中callParent的作用
callParent 是 Sencha 类系统提供的一个用于调用你父/祖先类中的方法. 这个通常用于当你 继承一个框架类 或者 覆写一个类中提供的方法(比如 onRender) 时. 当你在一个带参数 ...
- C++程序设计入门(上) 函数学习
局部变量和全局变量的访问: 全局变量的作用域时全局,局部变量的作用域是局部,若全局和局部的变量名相同的话,局部变量的改变不会引起全局变量的改变#include<iostream> int ...