题意:已知一个多边形的n个顶点坐标,然后再给一个钉子,给定钉子的半径和圆心坐标,首先判断多边形是否为凸多边形,若为凸多边形,再判断钉子是否可以放到凸多边形内部。

思路:
1.由于顶点给出的顺序可能为逆时针或顺时针,所以在判断是否为凸边形,利用叉积的性质,每个点依次扫描看是否都顺着同一的方向转动。
2.判断圆(钉子)是否在多边形内部,第一步判断圆心是否在凸多边形内部(以圆心为定点扫描一周),第二步再判断圆心到某一边的最短距离,若存在某最短距离大于圆心,则圆不能放在凸多边内。
或者思路可以参考这个:
http://blog.csdn.net/lyy289065406/article/details/6648606

#include <stdlib.h>
#include <math.h>
#include <iostream> #define MAXN 1000
#define offset 10000
#define eps 1e-8
#define zero(x) (((x)>0?(x):-(x))<eps)
#define _sign(x) ((x)>eps?1:((x)<-eps?2:0)) struct point{ double x, y; };
struct line{ point a, b; }; double xmult(point p1, point p2, point p0){
return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);
} //判定凸多边形,顶点按顺时针或逆时针给出,允许相邻边共线
bool is_convex(int n, point* p){
int i, s[3] = { 1, 1, 1 };
for (i = 0; i < n && s[1] | s[2]; i++)
s[_sign(xmult(p[(i + 1)%n], p[(i + 2)%n], p[i]))] = 0;
return s[1] | s[2];
} //判定凸多边形,顶点按顺时针或逆时针给出,不允许相邻边共线
bool is_convex_v2(int n, point* p){
int i, s[3] = { 1, 1, 1 };
for (i = 0; i < n && s[0] && s[1] | s[2]; i++)
s[_sign(xmult(p[(i + 1)%n], p[(i + 2)%n], p[i]))] = 0;
return s[0] && s[1] | s[2];
} //判点在凸多边形内或多边形边上,顶点按顺时针或逆时针给出
bool inside_convex(point q, int n, point* p){
int i, s[3] = { 1, 1, 1 };
for (i = 0; i < n && s[1] | s[2]; i++)
s[_sign(xmult(p[(i + 1)%n], q, p[i]))] = 0;
return s[1] | s[2];
} //判点在凸多边形内,顶点按顺时针或逆时针给出,在多边形边上返回0
bool inside_convex_v2(point q, int n, point* p){
int i, s[3] = { 1, 1, 1 };
for (i = 0; i < n && s[0] && s[1] | s[2]; i++)
s[_sign(xmult(p[(i + 1)%n], q, p[i]))] = 0;
return s[0] && s[1] | s[2];
} //判点在任意多边形内,顶点按顺时针或逆时针给出
//on_edge表示点在多边形边上时的返回值,offset为多边形坐标上限
bool inside_polygon(point q, int n, point* p, int on_edge = 1){
point q2;
int i = 0, count;
while (i < n)
for (count = i = 0, q2.x = rand() + offset, q2.y = rand() + offset; i < n; i++)
if (zero(xmult(q, p[i], p[(i + 1)%n])) && (p[i].x - q.x)*(p[(i + 1)%n].x - q.x) < eps && (p[i].y - q.y)*(p[(i + 1)%n].y - q.y) < eps)
return on_edge;
else if (zero(xmult(q, q2, p[i])))
break;
else if (xmult(q, p[i], q2)*xmult(q, p[(i + 1)%n], q2) < -eps && xmult(p[i], q, p[(i + 1)%n])*xmult(p[i], q2, p[(i + 1)%n]) < -eps)
count++;
return count & 1;
} inline bool opposite_side(point p1, point p2, point l1, point l2){
return xmult(l1, p1, l2)*xmult(l1, p2, l2) < -eps;
} inline bool dot_online_in(point p, point l1, point l2){
return zero(xmult(p, l1, l2)) && (l1.x - p.x)*(l2.x - p.x) < eps && (l1.y - p.y)*(l2.y - p.y) < eps;
} //判线段在任意多边形内,顶点按顺时针或逆时针给出,与边界相交返回1
bool inside_polygon(point l1, point l2, int n, point* p){
point t[MAXN], tt;
int i, j, k = 0;
if (!inside_polygon(l1, n, p) || !inside_polygon(l2, n, p))
return 0;
for (i = 0; i < n; i++)
if (opposite_side(l1, l2, p[i], p[(i + 1)%n]) && opposite_side(p[i], p[(i + 1)%n], l1, l2))
return 0;
else if (dot_online_in(l1, p[i], p[(i + 1)%n]))
t[k++] = l1;
else if (dot_online_in(l2, p[i], p[(i + 1)%n]))
t[k++] = l2;
else if (dot_online_in(p[i], l1, l2))
t[k++] = p[i];
for (i = 0; i < k; i++)
for (j = i + 1; j < k; j++){
tt.x = (t[i].x + t[j].x) / 2;
tt.y = (t[i].y + t[j].y) / 2;
if (!inside_polygon(tt, n, p))
return 0;
}
return 1;
} double distance(point p1, point p2)
{
return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));
}
double disptoline(point p, point l1, point l2){
return fabs(xmult(p, l1, l2)) / distance(l1, l2);
}
int intersect_seg_circle(point c, double r, point l1, point l2){
double t1 = distance(c, l1) - r, t2 = distance(c, l2) - r;
point t = c;
if (t1<eps || t2<eps)
return t1>-eps || t2>-eps;
t.x += l1.y - l2.y;
t.y += l2.x - l1.x;
return xmult(l1, c, t)*xmult(l2, c, t) < eps && disptoline(c, l1, l2) - r < eps;
}
//判断圆是否在多边形内
bool circle_in_polygen(double r, point o, int n, point *p)
{
for (int i = 1; i < n; i++)
{
bool flag = intersect_seg_circle(o, r, p[i - 1], p[i]);
if (flag) { return false; break; }
}
return true;
} point intersection(line u, line v){
point ret = u.a;
double t = ((u.a.x - v.a.x)*(v.a.y - v.b.y) - (u.a.y - v.a.y)*(v.a.x - v.b.x))
/ ((u.a.x - u.b.x)*(v.a.y - v.b.y) - (u.a.y - u.b.y)*(v.a.x - v.b.x));
ret.x += (u.b.x - u.a.x)*t;
ret.y += (u.b.y - u.a.y)*t;
return ret;
} point barycenter(point a, point b, point c){
line u, v;
u.a.x = (a.x + b.x) / 2;
u.a.y = (a.y + b.y) / 2;
u.b = c;
v.a.x = (a.x + c.x) / 2;
v.a.y = (a.y + c.y) / 2;
v.b = b;
return intersection(u, v);
} //多边形重心
point barycenter(int n, point* p){
point ret, t;
double t1 = 0, t2;
int i;
ret.x = ret.y = 0;
for (i = 1; i<n - 1; i++)
if (fabs(t2 = xmult(p[0], p[i], p[i + 1]))>eps){
t = barycenter(p[0], p[i], p[i + 1]);
ret.x += t.x*t2;
ret.y += t.y*t2;
t1 += t2;
}
if (fabs(t1) > eps)
ret.x /= t1, ret.y /= t1;
return ret;
} int main()
{
int n;
double pegR;
point peg;
while (std::cin >> n && (n >= 3))
{
std::cin >> pegR >> peg.x >> peg.y;
point p[155];
for (int i = 0; i < n; i++)
{
std::cin >> p[i].x >> p[i].y;
}
bool flag = is_convex(n, p);
bool flag2 = inside_convex_v2(peg, n, p);
bool flag3 = circle_in_polygen(pegR, peg, n, p); if (!flag)
std::cout << "HOLE IS ILL-FORMED" << std::endl;
else
{
if (flag2 && flag3)
std::cout << "PEG WILL FIT" << std::endl;
else
std::cout << "PEG WILL NOT FIT" << std::endl;
}
}
}

poj1584的更多相关文章

  1. POJ1584 A Round Peg in a Ground Hole 凸包判断 圆和凸包的关系

    POJ1584 题意:给定n条边首尾相连对应的n个点 判断构成的图形是不是凸多边形 然后给一个圆 判断圆是否完全在凸包内(相切也算) 思路:首先运用叉积判断凸多边形 相邻三条边叉积符号相异则必有凹陷 ...

  2. poj1584(判断凸包+求点到线段的距离)

    题目链接:https://vjudge.net/problem/POJ-1584 题意:首先要判断凸包,然后判断圆是否在多边形中. 思路: 判断凸包利用叉积,判断圆在多边形首先要判断圆心是否在多边形中 ...

  3. POJ1584 判断多边形是否为凸多边形,并判断点到直线的距离

    求点到直线的距离: double dis(point p1,point p2){   if(fabs(p1.x-p2.x)<exp)//相等的  {    return fabs(p2.x-pe ...

  4. poj1584 A Round Peg in a Ground Hole 判断多边形凹凸,点到线的距离【基础计算几何】

    大致思路:首先对于所给的洞的点,判断是否是凸多边形,图形的输入和输出可以是顺时针或者逆时针,而且允许多点共线 Debug 了好几个小时,发现如下问题 判断三点是否共线,可用斜率公式判断 POINT p ...

  5. poj1584 A round peg in a ground hole【计算几何】

    含[判断凸包],[判断点在多边形内],[判断圆在多边形内]模板  凸包:即凸多边形 用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边形,它能包含点集中所有的点. The ...

  6. poj分类 很好很有层次感。

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  7. 【转】POJ题目分类推荐 (很好很有层次感)

    OJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)初期: 一. ...

  8. 【转】ACM训练计划

    [转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...

  9. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

随机推荐

  1. BZOJ 3653 谈笑风生

    ORZ blutrex...... 主席树. #include<iostream> #include<cstdio> #include<cstring> #incl ...

  2. Linux kernel scriptes bin2c "\x"

    /**************************************************************************** * Linux kernel scripte ...

  3. Android Studio 小技巧合集

    本文翻译自 Android Studio Tips by Philippe Breault,一共收集了62个 Android Studio 使用小技巧和快捷键. 根据这些小技巧的使用场景,本文将这62 ...

  4. Python 字典(Dictionary) get()方法

    描述 Python 字典(Dictionary) get() 函数返回指定键的值,如果值不在字典中返回默认值. 语法 get()方法语法: dict.get(key, default=None) 参数 ...

  5. [转]Linux read用法

    来源:http://www.cnblogs.com/iloveyoucc/archive/2012/04/16/2451328.html 1.基本读取 read命令接收标准输入(键盘)的输入,或其他文 ...

  6. AE+C# 向axPageLayoutControl1添加图例

    原文 AE+C# 向axPageLayoutControl1添加图例 //Get the GraphicsContainer IGraphicsContainer graphicsContainer ...

  7. js获取字符串最后一个字符代码

    方法一:运用String对象下的charAt方法 charAt() 方法可返回指定位置的字符. 代码如下 复制代码 str.charAt(str.length – 1) 请注意,JavaScript ...

  8. 【LeetCode】7 & 8 - Reverse Integer & String to Integer (atoi)

    7 - Reverse digits of an integer. Example1: x = 123, return 321Example2: x = -123, return -321 Notic ...

  9. C++11 之 &quot; = delete &quot;

    1  缺省函数 设计一个类,没有成员函数 (member function),只有成员数据 (member data) class DataOnly { private: std::string st ...

  10. 30个有关Python的小技巧

    从我开始学习python的时候,我就开始自己总结一个python小技巧的集合.后来当我什么时候在Stack Overflow或者在某个开源软件里看到一段很酷代码的时候,我就很惊讶:原来还能这么做!,当 ...