思路:

容易知道,分解成素数的lcm肯定是最大的,因为假设分解成2个合数,设定x为他们的 最大公约数,

那么他们的最小公倍数就要减少x倍了
然后如果是素数之间的最小公倍数,那么就只是他们的乘积,同样的n分解,没有 除的肯定比有除的大,

因此可以得到结论 所以可以先晒一次素数,然后用这些素数填满那个n
这里填满也很容易想到是背包问题了,因为同一个素数可以用几次,所以就是一个 典型的多重背包了,

就是dp[j] = lcm(dp[j - k] , dp[k]);
然后还有一个问题,就是对于所有素数取lcm,会导致结果很大,超int的 而且虽然有取mod,

那么转移方程变为dp[j] = dp[j - k] * w * prime[i]; 都是乘法运算,那么我们就可以利用取对数,

把乘法运算转成加法来判断了就行了 然后另开一个数组,用来取mod的,最后结果就是dp[n]了

代码如下:

 #include<cstdio>
#include<vector>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#define M 10005
using namespace std;
double dp[M];
int p[M];
int prime[M],cnt,n;
bool f[M];
void init()
{
cnt=;
for(int i=;i<M;i++){
if(!f[i]) prime[cnt++]=i;
for(int j=;j<cnt&&i*prime[j]<M;j++){
f[i*prime[j]]=;
if(i%prime[j]==) break;
}
}
}
void solve(int m)
{
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++) p[i]=;
for(int i=;i<cnt&&prime[i]<=n;i++){
double t=log(prime[i]);
for(int j=n;j>=prime[i];j--){
for(int k=prime[i],num=;k<=j;k*=prime[i],num++)
if(dp[j-k]+t*num>dp[j]){
dp[j]=dp[j-k]+t*num;
p[j]=p[j-k]*k%m;
}
}
}
}
int main()
{
int m;
init();
while(scanf("%d%d",&n,&m)!=EOF){
solve(m);
printf("%d\n",p[n]);
}
return ;
}

hdu 3092 Least common multiple的更多相关文章

  1. 背包系列练习及总结(hud 2602 && hdu 2844 Coins && hdu 2159 && poj 1170 Shopping Offers && hdu 3092 Least common multiple && poj 1015 Jury Compromise)

    作为一个oier,以及大学acm党背包是必不可少的一部分.好久没做背包类动规了.久违地练习下-.- dd__engi的背包九讲:http://love-oriented.com/pack/ 鸣谢htt ...

  2. HDU 3092 Least common multiple 01背包

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3092 Least common multiple Time Limit: 2000/1000 MS ...

  3. ACM学习历程—HDU 3092 Least common multiple(数论 && 动态规划 && 大数)

    Description Partychen like to do mathematical problems. One day, when he was doing on a least common ...

  4. HDU 1019 Least Common Multiple【gcd+lcm+水+多个数的lcm】

    Least Common Multiple Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  5. HDU 4913 Least common multiple

    题目:Least common multiple 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4913 题意:有一个集合s,包含x1,x2,...,xn, ...

  6. hdu 2028 Lowest Common Multiple Plus(最小公倍数)

    Lowest Common Multiple Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  7. ACM hdu 1019 Least Common Multiple

    Problem Description The least common multiple (LCM) of a set of positive integers is the smallest po ...

  8. HDU 2028 Lowest Common Multiple Plus

    http://acm.hdu.edu.cn/showproblem.php?pid=2028 Problem Description 求n个数的最小公倍数.   Input 输入包含多个测试实例,每个 ...

  9. HDU - 1019 - Least Common Multiple - 质因数分解

    http://acm.hdu.edu.cn/showproblem.php?pid=1019 LCM即各数各质因数的最大值,搞个map乱弄一下就可以了. #include<bits/stdc++ ...

随机推荐

  1. Android SharedPreferences使用以及原理详解

    SharedPreferences的使用非常简单,能够轻松的存放数据和读取数据.SharedPreferences只能保存简单类型的数据,例如,String.int等.一般会将复杂类型的数据转换成Ba ...

  2. 在meteor中如何使用ionic组件tabs,及如何添加使用cordova plugin inappbrower

    更新框架: meteor update meteor框架的优点不言而喻,它大大减轻了App前后端开发的负担,今年5月又获得B轮2000万融资,代表了市场对它一个免费.开源开发框架的肯定.cordova ...

  3. 如何使用和了解ALTERA的IP核

    可以通过直接对IP核进行仿真验证,通过波形来分析IP核的功能和工作方式,以及各个寄存器之间的工作关系. 也可以通过查看用户指导手册来学习IP核,如下图.

  4. DSP280x的数模转换使用

    /*****************************************************************************Copyright: 2013File na ...

  5. UML详解

    学习c++必不可少UML,UML从考虑系统的不同角度出发,定义了用例图.类图.对象图.状态图.活动图.序列图.协作图.构件图.部署图等9种图.这些图从不同的侧面对系统进行描述.系统模型将这些不同的侧面 ...

  6. color the python console text

    //install termcolor module cd \ cd python27 cd scripts pip install termcolor pip install colorama // ...

  7. 结队开发项目——基于Android的无线点餐系统——NABC模型

    特点:通过提前订餐,可以节约学生大量的排队时间. N(need):生活中可以发现许多同学都喜欢出去买饭,而且在有的摊位需要排很长时间的队,这样他们就会很晚吃到饭,下午有课的学生都不能睡午觉,所以通过我 ...

  8. jQuery实现模拟滚动条效果;

    滚动条在web开发中,很常见,原生的HTML滚动条很难看,因此很多网站借助JS来模拟实现滚动条效果: 滚动条的实现原理其实比较简单,拿垂直滚动条来说: 1),最外层容器需要设置overflow:hid ...

  9. Android基础整理之四大组件Activity

    最近准备系统的重新整理复习一下Android的各方面的知识,本着知识分享的原则,我就把梳理过程中一些东西给记录下来,权当一个学习笔记吧. 下面步入正题..... 什么是Activity Activit ...

  10. Careercup - Microsoft面试题 - 6314866323226624

    2014-05-11 05:29 题目链接 原题: Design remote controller for me. 题目:设计一个遥控器. 解法:遥控什么?什么遥控?传统的红外线信号吗?我只能随便说 ...