题目大意:

给定n个点,给每个点都安排一个相同的正方形,使这个点落在正方形的下底边的中间或者上底边的中间,并让这n个正方形不出现相互覆盖,可以共享同一条边,求

这个正方形最大的边长

这里明显看出n个点,每个点都只有在上底边和下底边两种选择,所以这里是2-sat解决

这里全都是整数,而因为点在正方形的中间,所以/2后会有小数

我这里初始将所有点都扩大两倍,那么答案必然扩大两倍,所以我们二分只考虑边长为偶数的情况即可,这样计算结果就不会出现小数了

最后将答案除以2便是

 #include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std; #define N 210
int n , S[N] , x[N] , y[N] , k;
vector<int> G[N];
bool mark[N]; struct Rec{
int x[] , y[];
bool in(Rec a){
if(a.x[]>=x[] || a.y[]>=y[] || a.x[]<=x[] || a.y[]<=y[]) return false;
return true;
}
}a , b , c , d; void init(int n)
{
memset(mark , , sizeof(mark));
for(int i= ; i<*n ; i++) G[i].clear();
} bool dfs(int u)
{
if(mark[u]) return true;
if(mark[u^]) return false;
mark[u] = true;
S[k++] = u;
for(int i= ; i<G[u].size() ; i++)
if(!dfs(G[u][i])) return false;
return true;
} bool solve(int n)
{
for(int i= ; i<*n ; i+=)
if(!mark[i] && !mark[i^]){
k= ;
if(!dfs(i)){
while(k) mark[S[--k]] = false;
if(!dfs(i^)) return false;
}
}
return true;
} void add_clause(int a , int p , int b , int q)
{
int m=*a+p;
int n=*b+q;
//m,n互斥
G[m].push_back(n^);
G[n].push_back(m^);
} bool check(int m)
{
init(n);
if(m&) m--;
for(int i= ; i<n ; i++){
for(int j=i+ ; j<n ; j++){
//down , up 2*2 four case
a.x[] = x[i]-m/ , a.y[] = y[i];
a.x[] = x[i]+m/ , a.y[] = y[i];
a.x[] = a.x[] , a.y[] = y[i]+m;
a.x[] = a.x[] , a.y[] = y[i]+m; b.x[] = x[j]-m/ , b.y[] = y[j];
b.x[] = x[j]+m/ , b.y[] = y[j];
b.x[] = b.x[] , b.y[] = y[j]+m;
b.x[] = b.x[] , b.y[] = y[j]+m; c.x[] = x[i]-m/ , c.y[] = y[i]-m;
c.x[] = x[i]+m/ , c.y[] = y[i]-m;
c.x[] = c.x[] , c.y[] = y[i];
c.x[] = c.x[] , c.y[] = y[i]; d.x[] = x[j]-m/ , d.y[] = y[j]-m;
d.x[] = x[j]+m/ , d.y[] = y[j]-m;
d.x[] = d.x[] , d.y[] = y[j];
d.x[] = d.x[] , d.y[] = y[j]; if(a.in(b)) add_clause(i , , j , );
if(a.in(d)) add_clause(i , , j , );
if(c.in(b)) add_clause(i , , j , );
if(c.in(d)) add_clause(i , , j , );
}
}
return solve(n);
} int main()
{
// freopen("in.txt" , "r" , stdin);
int T;
scanf("%d" , &T);
while(T--)
{
scanf("%d" , &n);
for(int i= ; i<n ; i++){
scanf("%d%d" , &x[i] , &y[i]);
x[i]*= , y[i]*=;
}
int l= , r=1e5 , ret=l;
while(l<=r){
int m = (l+r)>>;
if(check(m)) ret=m , l=m+;
else r=m-;
}
printf("%d\n" , ret/);
}
return ;
}

POJ 2296 二分+2-sat的更多相关文章

  1. Map Labeler POJ - 2296(2 - sat 具体关系建边)

    题意: 给出n个点  让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...

  2. Map Labeler (poj 2296 二分+2-SAT)

    Language: Default Map Labeler Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1815   Ac ...

  3. POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat 二分)

    POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat ...

  4. POJ - 2018 二分+单调子段和

    依然是学习分析方法的一道题 求一个长度为n的序列中的一个平均值最大且长度不小于L的子段,输出最大平均值 最值问题可二分,从而转变为判定性问题:是否存在长度大于等于L且平均值大于等于mid的字段和 每个 ...

  5. POJ 2296 Map Labeler(2-sat)

    POJ 2296 Map Labeler 题目链接 题意: 坐标轴上有N个点.要在每一个点上贴一个正方形,这个正方形的横竖边分别和x,y轴平行,而且要使得点要么在正方形的上面那条边的中点,或者在以下那 ...

  6. poj 3621 二分+spfa判负环

    http://poj.org/problem?id=3621 求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大. 0/1整数划分问题 令在一个环里,点权为v[i], ...

  7. POJ 3061 (二分+前缀和or尺取法)

    题目链接: http://poj.org/problem?id=3061 题目大意:找到最短的序列长度,使得序列元素和大于S. 解题思路: 两种思路. 一种是二分+前缀和.复杂度O(nlogn).有点 ...

  8. POJ 2456 (二分)

    题目链接: http://poj.org/problem?id=2456 题目大意:n个房子,m头牛,房子有一个横坐标,问将m头牛塞进房子,每两头牛之间的最大间隔是多少. 解题思路: 不难看出应该二分 ...

  9. POJ 1064 (二分)

    题目链接: http://poj.org/problem?id=1064 题目大意:一堆棍子可以截取,问要求最后给出K根等长棍子,求每根棍子的最大长度.保留2位小数.如果小于0.01,则输出0.00 ...

随机推荐

  1. Android 中Service生命周期

    使用context.startService() 启动Service 其生命周期为context.startService() ->onCreate()- >onStart()->S ...

  2. Android 摇一摇之双甩功能

    Android 摇一摇之双甩功能 最近做一个摇一摇的功能 网上相关代码很多 但是这次的需求有点奇葩 要求是摇两次才生效 看起来好像很简单 但真正要做遇到的问题还是很多 时间限制 机型灵敏性 摇动的方式 ...

  3. hdu 1575 Tr A(矩阵快速幂)

    今天做的第二道矩阵快速幂题,因为是初次接触,各种奇葩错误整整调试了一下午.废话不说,入正题.该题应该属于矩阵快速幂的裸题了吧,知道快速幂原理(二进制迭代法,非递归版)后,剩下的只是处理矩阵乘法的功夫了 ...

  4. Java JTable 表格 获取存储路径,文件名 ,导出excel表格

    在做计量泵上位机软件时,需要将下位机传上来的数据,存入MYSQL数据库,显示在java 上位机界面上,并能导出至电脑指定位置. 选择存储路径和文件名: // 处理另存文件的菜单 public void ...

  5. ajax中向HTML页面中指定位置添加信息

    $.ajax({  type : "POST",  beforeSend : function() {   showLoader("数据加载中...");// ...

  6. android内存泄露小谈

    在做android的时候,用的语言大部分情况下都是java.以前最开始做的是编译器开发, 大部分情况都是用c语言和x86与arm架构的汇编,后来接触到ios用的是OC.对比之下, 感觉还是java用起 ...

  7. css读书笔记2:css工作原理

    css就是一种先选择html元素,然后设定选中元素css属性的机制.css选择符合要应用的样式构成一条css规则. 为文档添加样式的3种方法: 1.行内样式,直接写在特定标签的style属性中:2.嵌 ...

  8. hdu 1026 Ignatius and the Princess I (bfs+记录路径)(priority_queue)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1026 Problem Description The Princess has been abducted ...

  9. robotframework笔记10

    循环和条件 for循环 *** Settings *** Library BuiltIn Library Collections *** Test Cases *** TestCase01 My Ke ...

  10. Ubuntu 修复windows启动项

    打开终端输入命令sudo gedit /etc/default/grub修改GRUB_TIMEOUT="10"然后在终端中输入sudo update-grubupdate 命令会自 ...