Balanced Lineup
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 42489   Accepted: 20000
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i

Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

Output

Lines 1..Q:
Each line contains a single integer that is a response to a reply and
indicates the difference in height between the tallest and shortest cow
in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0 题目大意,给定一个数组,求任意给定区间的最大值与最小值只差
典型的线段树问题,但是由于输入输出的数据量很大,所以只能使用scanf,printf进行输入输出,如果使用cin,cout则会超时
我的ac代码:
#include<iostream>
#include<algorithm>
#include<stdio.h>
using namespace std;
struct node{
int r,l,vmin,vmax;
}tree[];
int a[];
void createTree(int v,int l,int r){
tree[v].l=l;
tree[v].r=r;
if(l==r){
tree[v].vmax=tree[v].vmin=a[l];
return ;
}
int mid=(r+l)>>;
createTree(v<<,l,mid);
createTree((v<<)|,mid+,r);
tree[v].vmax=max(tree[v<<].vmax,tree[(v<<)|].vmax);
tree[v].vmin=min(tree[v<<].vmin,tree[(v<<)|].vmin);
}
int findAns(int v,int l,int r,bool f){
if(tree[v].l==l&&tree[v].r==r){
if(f)return tree[v].vmin;
return tree[v].vmax;
}
int mid=(tree[v].l+tree[v].r)>>;
if(r<=mid)return findAns(v<<,l,r,f);
if(l>mid) return findAns((v<<)|,l,r,f);
if(f) return min(findAns(v<<,l,mid,f),findAns((v<<)|,mid+,r,f));
return max(findAns(v<<,l,mid,f),findAns((v<<)|,mid+,r,f));
}
int main(){
int N,Q,l,r;
while(cin>>N>>Q){
for(int i=;i<=N;i++)
scanf("%d",&a[i]); createTree(,,N);
while(Q--){
scanf("%d%d",&l,&r);
printf("%d\n",findAns(,l,r,)-findAns(,l,r,));
}
}
return ;
}

poj 3264 Balanced Lineup (线段树)的更多相关文章

  1. [POJ] 3264 Balanced Lineup [线段树]

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34306   Accepted: 16137 ...

  2. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

  3. POJ 3264 Balanced Lineup 线段树RMQ

    http://poj.org/problem?id=3264 题目大意: 给定N个数,还有Q个询问,求每个询问中给定的区间[a,b]中最大值和最小值之差. 思路: 依旧是线段树水题~ #include ...

  4. POJ 3264 Balanced Lineup 线段树 第三题

    Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...

  5. POJ 3264 Balanced Lineup (线段树)

    Balanced Lineup For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the s ...

  6. POJ - 3264 Balanced Lineup 线段树解RMQ

    这个题目是一个典型的RMQ问题,给定一个整数序列,1~N,然后进行Q次询问,每次给定两个整数A,B,(1<=A<=B<=N),求给定的范围内,最大和最小值之差. 解法一:这个是最初的 ...

  7. 【POJ】3264 Balanced Lineup ——线段树 区间最值

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34140   Accepted: 16044 ...

  8. Poj 3264 Balanced Lineup RMQ模板

    题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...

  9. POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53703   Accepted: 25237 ...

  10. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

随机推荐

  1. hiho_1053_居民迁移

    题目大意 有N个居民点在一条直线上,每个居民点有一个x表示坐标,y表示居民点的现有居民数.现在要求将居民点的居民重新分配,每个居民点的居民最远迁移的距离为R,要求分配完之后,居民点中居民数最多的居民点 ...

  2. Windows高精度时间

    目录 第1章计时    1 1.1 GetTickCount    1 1.2 timeGetTime    1 1.3 QueryPerformanceCounter    1 1.4 测试     ...

  3. 微信JS SDK Demo 官方案例

    微信JS-SDK是微信公众平台面向网页开发者提供的基于微信内的网页开发工具包. 通过使用微信JS-SDK,网页开发者可借助微信高效地使用拍照.选图.语音.位置等手机系统的能力,同时可以直接使用微信分享 ...

  4. 009-Selenium2环境搭建

    1.Java开发环境的搭建      本课程中将使用Java语言编写Selenium自动化测试脚本,在Eclipse集成开发环境中运行. (1)jdk的安装 a.下载 官网下载,http://www. ...

  5. 《javascript高级程序设计》第四章 Variables,scope,and memory

    4.1 基本类型和引用类型的值 primitive and reference values 4.1.1 动态的属性 dynamic properties 4.1.2 复制变量值 copying va ...

  6. 128. Longest Consecutive Sequence *HARD* -- 寻找无序数组中最长连续序列的长度

    Given an unsorted array of integers, find the length of the longest consecutive elements sequence. F ...

  7. QA16复制_新增查询条件,修改批量使用决策

    需求: 增加评估代码,检验类型条件.(检验批中部分检验项目未录结果的检验批显示    注:标准的程序,不支持空结果的查询和使用决策) 1.复制 RQEVAI10 程序 2.因为这是用的QM模块的逻辑数 ...

  8. JavaScript之模块化编程

    前言 模块是任何大型应用程序架构中不可缺少的一部分,模块可以使我们清晰地分离和组织项目中的代码单元.在项目开发中,通过移除依赖,松耦合可以使应用程序的可维护性更强.与其他传统编程语言不同,在当前Jav ...

  9. Objective-C:Foundation框架-常用类-NSMutableString

    NSString是不可变的,不能删除字符或修改字符,它有一个子类NSMutableString,为可变字符串. NSMutableString的两种创建方法: - (id) initWithCapac ...

  10. 数据库索引<二> 如何创建索引

    前面一篇说法了索引结构,和几种索引在数据表上的结构,了解了索引可以为查询服务,这篇说一说如何创建索引. >平时可能的创建方式 这个系统中要用到A字段,B字段,C字段做为查询的条件,联接的条件较多 ...