ASE又走到了关键的一步  要生成能决定是否有差异表达的table.

准备借鉴一下cuffdiff和edgeR 的结果

cuffdiff对差异表达基因的描述:

一共十四列:

第一列, test_id

a unique identifer describing the transcript, gene, primary transcript, or CDS being tested.

eg XLOC_000003

第二列,gene_id

eg XLOC_000003

第三列, gene

第四列, locus

genomic coordinates for easy browsing to the genes or transcripts being tested.

eg contig_23646:3511-3922

第五列, sample1

label (or number if no labels provided) of the first sample being tested

eg Sample_E

第六列, sample2

label (or number if no labels provided) of the second sample being tested

eg Sample_FHM

第七列, status

can be one of OK(test successful), NOTEST(not enough alignments for testing), LOWDATA(too many fragments in locus), or FAIL, when an ill-conditioned covariance matrix or other numerical exception prevents testing

eg OK

第八列 value_1

FPKM of the gene in sample 1

eg 339.567

第九列 value_2

FPKM of the gene in sample 2

eg 465.939

第十列 log2(fold change)

the (base 2 ) log of the fold change 1/2

eg 0.456447

第十一列 test stat

the value of the test statistic used to compute significance of the observed change in FPKM

不懂什么意思 估计要去翻统计书的节奏了

eg 0.361712

第十二列 p_value

the uncorrected p-value of the test statistic

eg 0.4849

第十三列 q_value

the FDR-adjusted p-value of the test statistic

eg 0.756741

第十四列 significant

can be either 'yes' or 'no' , depending on whether p is greater than the FDR after Benjamini-Hochberg correction for multiple-testing

eg no

The FPKM value represents the concentration of a transcript in your samples, normalized for observed read counts and gene length. Thus fields 7,8 represent measurements for your samples and field 9 is simply a ratio of the two. You might look up FPKM or RPKM values if you're unsure what they represent. Fields 11 and 12 are p-value and q-value. These are values associated with the measured variation or uncertainty when you make repeated measurements of something. You should look up what a p-value and an "adjusted p-value" are (the adjusted one is important for you to understand if you're going to do any genomic data analysis). The 13th field is simply a flag based on whether the value in field 11 or 12 is less than 0.05 (I forget which one, but you could figure it out by exploring your data).

edge R 结果对差异表达基因的描述:

Differential expression analysis of RNA-seq and digital gene expression profiles with biological replication.  Uses empirical Bayes estimation and exact tests based on the negative binomial distribution.  Also useful for differential signal analysis with other types of genome-scale count data.(貌似两者采用的分布模型是不一样的哦~~)

by freemao

FAFU

free_mao@qq.com

cuffdiff 和 edgeR 对差异表达基因的描述的更多相关文章

  1. RNA-seq差异表达基因分析之TopHat篇

    RNA-seq差异表达基因分析之TopHat篇 发表于2012 年 10 月 23 日 TopHat是基于Bowtie的将RNA-Seq数据mapping到参考基因组上,从而鉴定可变剪切(exon-e ...

  2. 使用GEO数据库来筛选差异表达基因,KOBAS进行KEGG注释分析

    前言 本文主要演示GEO数据库的一些工具,使用的数据是2015年在Nature Communications上发表的文章Regulation of autophagy and the ubiquiti ...

  3. 使用Trinity拼接以及分析差异表达一个小例子

    使用Trinity拼接以及分析差异表达一个小例子  2017-06-12 09:42:47     293     0     0 Trinity 将测序数据分为许多独立的de Brujin grap ...

  4. 使用limma、Glimma和edgeR,RNA-seq数据分析易如反掌

    使用limma.Glimma和edgeR,RNA-seq数据分析易如反掌 Charity Law1, Monther Alhamdoosh2, Shian Su3, Xueyi Dong3, Luyi ...

  5. Differential expression analysis for paired RNA-seq data 成对RNA-seq数据的差异表达分析

    Differential expression analysis for paired RNA-seq data 抽象背景:RNA-Seq技术通过产生序列读数并在不同生物条件下计数其频率来测量转录本丰 ...

  6. RNA-Seq differential expression analysis: An extended review and a software tool RNA-Seq差异表达分析: 扩展评论和软件工具

    RNA-Seq differential expression analysis: An extended review and a software tool   RNA-Seq差异表达分析: 扩展 ...

  7. 差异基因分析:fold change(差异倍数), P-value(差异的显著性)

    在做基因表达分析时必然会要做差异分析(DE) DE的方法主要有两种: Fold change t-test fold change的意思是样本质检表达量的差异倍数,log2 fold change的意 ...

  8. edgeR使用学习【转载】

    转自:http://yangl.net/2016/09/27/edger_usage/ 1.Quick start 2. 利用edgeR分析RNA-seq鉴别差异表达基因: #加载软件包 librar ...

  9. Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls RNA-Seq差异表达调用的灵敏度 特异性 重复性

    Sensitivity, specificity, and reproducibility of RNA-Seq differential expression calls RNA-Seq差异表达调用 ...

随机推荐

  1. VBA解密

    1.关闭要解密的excel文件,新建一个excel文件 2.打开新建的这个Excel,按下alt+F11,打开vb界面,新建一个模块,如图所示 3.将代码复制到这个模块中,代码如下:Private S ...

  2. 铁人系列(2)LA2218

    思路:对于每个人  都会有n-1个半片面  加上x>0,y>0,1-x-y>0(这里的1抽象为总长) 代码是粘贴的  原来写的不见了  orz............ // LA22 ...

  3. 转: Oracle中的物化视图

    物化视图创建语法:CREATE MATERIALIZED VIEW <schema.name>PCTFREE <integer>--存储参数PCTUSED <intege ...

  4. 佳佳的魔杖 (vijos 1283)

    题目大意: 一根树枝有N段,每一段有一个分数,可以选取一些不完全包含(可以相交)的区间,每次选取可以得到区间里所有数之和的分数. 求最大得分. 解题过程: 1.很明显的dp,默认选取区间的顺序是从左往 ...

  5. JSON:org.json的基本用法

    java中用于解释json的主流工具有org.json.json-lib与gson,本文介绍org.json的应用. 官方文档: http://www.json.org/java/ http://de ...

  6. IT公司100题-8-智力题

    问题1: 有两个房间,一间房里有三盏灯,另一间房有控制着三盏灯的三个开关, 这两个房间是分割开的,从一间里不能看到另一间的情况. 现在要求受训者分别进这两房间一次,然后判断出这三盏灯分别是由哪个开关控 ...

  7. C-crash的方法

    #include <iostream> using namespace std; int main() { #if 0 //devide by 0 ; ; double d = i/j; ...

  8. ToolBar+DrawerLayout + NavigationView

    http://www.jianshu.com/p/9471b87f2c61 很好的博客可以瞅瞅 <android.support.design.widget.NavigationView and ...

  9. JAVA小记

    关于重写equals()方法和重写toString()方法,一般来说,Objects的默认子类都重写了这两个方法,直接利用就行了: 对于用户自定义的类,如果要用到这两方法,就必须在程序中重写.

  10. java基础之 集合

    一.ArrayList和Linkedlist的区别 1.ArrayList是基于数组,LinkedList基于链表实现. 对ArrayList和LinkedList而言,在列表末尾增加一个元素所花的开 ...