[物理学与PDEs]书中一些对数学研究有用的引理
P 35--38
1. 若 ${\bf B}$ 为横场 ($\Div{\bf B}=0\ra {\bf k}\cdot {\bf B}=0\ra $ 波的振动方向与传播方向平行), 则 $$\bex \exists\ {\bf A},\st {\bf B}=\rot{\bf A}. \eex$$ 特别对任给的 $\psi$, 还可要求 $\Div{\bf A}=\psi$.
2. 若 ${\bf A}$ 为纵场 ($\rot{\bf A}={\bf 0}$), 则 $$\bex \exists\ \psi,\st {\bf A}=\n\psi. \eex$$
3. 任一向量场都可分解为横场与纵场的叠加.
P 67-68
4. 任一向量场 ${\bf A}$ 都可分解为横场 ${\bf A}_T$ 与纵场 ${\bf A}_L$ 的叠加, 但只要在边界上 ${\bf A}_L\times{\bf n}=0$, 就有分解的唯一性, 且 ${\bf A}_L$ 有形式 ${\bf A}_L=-\n\psi$, 其中 $\psi$ 为 $$\beex \bea -\lap\psi=\Div{\bf A},&\quad\mbox{in }\Omega,\\ \psi=C,&\quad\mbox{on }\p\Omega \eea \eeex$$ 的解.
P 123-124
5. 任一向量场 ${\bf A}$ 都可分解为横场 ${\bf A}_T$ 与纵场 ${\bf A}_L$ 的叠加, 但只要在边界上 ${\bf A}_T\cdot {\bf n}=0$, 就有分解的唯一性, 且 ${\bf A}_T$ 为 $$\beex \bea -\Div{\bf A}_T=0,&\mbox{in }\Omega,\\ {\bf A}_T\cdot{\bf n}=0,&\mbox{on }\p\Omega \eea \eeex$$ 的解.
P 94-95
6. 设 $L=L(\xi_0,\xi_1,\cdots,\xi_n)$ 为其变元的严格凸函数, 且 $L_{\xi_0}<0$, 则 $\xi_0=\xi_0(L,\xi_1,\cdots,\xi_n)$ 也为其变元的严格凸函数.
P 95
7. 设 $L=L(\xi_0,\xi_1,\cdots,\xi_n)$ 为其变元 $\xi_0>0,\xi_1,\cdots,\xi_n$ 的严格凸函数, 则 $$\bex M=\cfrac{1}{\xi_0}L(\xi_0,\xi_1,\cdots,\xi_n) \eex$$ 关于变量 $$\bex \eta_0=\cfrac{1}{\xi_0},\quad \xi_1=\cfrac{\xi_1}{\xi_0},\cdots,\eta_n=\cfrac{\xi_n}{\xi_0} \eex$$ 是严格凸的.
P 200
引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf R}{\bf U}={\bf V}{\bf R}. \eex$$ 此称为 ${\bf F}$ 的极分解.
P 213
$({\bf a}\times {\bf b})_i=\ve_{ijk}a_jb_k$, 其中 $$\bex \ve_{ijk}=\sedd{\ba{lll} 1,&(i,j,k)\ is\ an\ even\ permuatation\ of\ (1,2,3),\\ -1,&(i,j,k)\ is\ an\ odd\ permuatation\ of\ (1,2,3),\\ 0,&others. \ea} \eex$$
P 215
引理: 设 $\Omega$ 中 ${\bf x}$ 处的曲面微元 $\rd S_0$ (其单位法向量为 ${\bf n}$) 在变形 ${\bf y}={\bf y}(t,{\bf x})$ 下对应于 $\Omega_t$ 中的曲面微元 $\rd S_t$ (其单位法向量为 ${\bf \nu}$). 那么 $$\bex {\bf \nu}\rd S_t=J{\bf F}^{-T}{\bf n}\rd S_0, \eex$$ 其中 ${\bf F}=(\n_x{\bf y})$, $J=|{\bf F}|$.
P 225
$$\beex \bea \lm_1\lm_2&+\lm_2\lm_3+\lm_3\lm_1=\cfrac{1}{2} \sez{(\lm_1+\lm_2+\lm_3)^2-(\lm_1^2+\lm_2^2+\lm_3^2)},\\ \lm_1\lm_2\lm_3&=\cfrac{1}{6}(\lm_1+\lm_2+\lm_3)^3 -\cfrac{1}{2}(\lm_1+\lm_2+\lm_3)(\lm_1^2+\lm_2^2+\lm_3^2) +\cfrac{1}{3}(\lm_1^3+\lm_2^3+\lm_3^3). \eea \eeex$$
P 263
设 $3\times 3$ 阵 ${\bf A}$ 的特征值为 $\lm_1,\lm_2,\lm_3$, 证明 $\cof {\bf A}$ 的特征值为 $$\bex \lm_2\lm_3,\quad \lm_3\lm_1,\quad \lm_1\lm_2. \eex$$
[物理学与PDEs]书中一些对数学研究有用的引理的更多相关文章
- [物理学与PDEs]书中出现的符号及其意义汇总
1. 标量 $\ve_0$: $=8.85419\times 10^{-2}C^2/(N\cdot m^2)$ 真空中的介电常数 $\ve$: 介电常数 $\ve_r$: $=1+\chi_e$ 相对 ...
- [物理学与PDEs]书中出现的向量公式汇总
P 11 1. $\rot (\phi{\bf A})=\n \phi\times{\bf A}+\phi\ \rot{\bf A}$. 2. $-\lap {\bf A}=\rot\rot {\bf ...
- [物理学与PDEs]书中的错误指出
记号意义: P--Page, 第几页; L--Line, 顺数第几行; LL--Last Line, 倒数第几行. P 64 L 1 ``15)'' should be ``14)''. P 70 L ...
- [物理学与PDEs]第1章 电动力学
[物理学与PDEs]第1章第1节 引言 [物理学与PDEs]第1章第2节 预备知识 2.1 Coulomb 定律, 静电场的散度与旋度 [物理学与PDEs]第1章第2节 预备知识 2.2 Ampere ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- 《Unity3D 实战核心技术详解》书中关于矩阵的错误
最近一直在学习实时渲染,不免要接触线性代数.而渲染中,一定会用到矩阵,当我再次去复习我之前看的书时,发现<Unity3D 实战核心技术详解>关于矩阵就有几处错误 ,特标注出来. 书的第一章 ...
- 详解Python编程中基本的数学计算使用
详解Python编程中基本的数学计算使用 在Python中,对数的规定比较简单,基本在小学数学水平即可理解. 那么,做为零基础学习这,也就从计算小学数学题目开始吧.因为从这里开始,数学的基础知识列位肯 ...
- 《 .NET并发编程实战》一书中的节流为什么不翻译成限流
有读者问,为什么< .NET并发编程实战>一书中的节流为什么不翻译成限流? 这个问题问得十分好!毕竟“限流”这个词名气很大,耳熟能详,知名度比“节流”大多了. 首先,节流的原词Thrott ...
随机推荐
- 越狱Season 1-Episode 2: Allen
Season 1, Episode 2: Allen [Previously, on Prison Break] previously: 以前(预先) 前情回顾 -Judge: I find it i ...
- Python爬虫学习笔记——豆瓣登陆(三)
之前是不会想到登陆一个豆瓣会需要写三次博客,修改三次代码的. 本来昨天上午之前的代码用的挺好的,下午时候,我重新注册了一个号,怕豆瓣大号被封,想用小号爬,然后就开始出问题了,发现无法模拟登陆豆瓣了,开 ...
- Unity3D研究院之Inspector面板枚举的别名与排序
虽然mono是支持unicode的.可以在枚举里写中文,但是我还是觉得写英文好一些.可是在编辑器上策划是希望看到的是中文的,还有就是枚举的展示排序功能,策划在编辑的时候为了方便希望把常用的枚举排上前面 ...
- Uinty3d 镜面反射代码
镜面反射代码 文件名MirrorReflection.cs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2 ...
- jquery得到iframe src属性值的方法
这篇文章主要介绍了jquery得到iframe src属性值的方法,很简单,很实用,需要的朋友可以参考下 取得iframe src属性的的值: Html代码 <!DOCTYPE HTML> ...
- Web.Config文件中使用configSource
我们都知道,在asp.net中修改了配置文件web.config后,会导致应用程序重启,所有会话(session)丢失.然而,应用程序的配置信息放在配置文件里是最佳选择,在后台修改了配置后导致所有会话 ...
- 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)
// The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...
- 一个关于正整数x的约数个数的结论
分析理解:x的每一个约数都是由x的若干个质因数的积构成. 再根据乘法原理,每个质因数Pi的选择可以是0~Ni个,所以上述结论成立.
- Java语言编码规范(Java Code Conventions)
Java语言编码规范(Java Code Conventions) 名称 Java语言编码规范(Java Code Conventions) 译者 晨光(Morning) 简介 本文档讲述了Java语 ...
- C#的浅拷贝和深拷贝
C#中有两种类型变量,一种 是值类型变量,一种是引用类型变量 对于值类型变量,深拷贝和前拷贝都是通过赋值操作符号(=)实现,其效果一致,将对象中的值类型的字段拷贝到新的对象中.这个很容易理解. 本文重 ...