一.背景:

配运平台组的快递订单履约中心(cp-eofc)及物流平台履约中心(jdl-uep-ofc)系统都使用了ShardingSphere生态的sharding-jdbc作为分库分表中间件, 整个集群采用只分库不分表的设计,共16个MYSQL实例,每个实例有32个库,集群共512个库.

当每增加一台客户端主机,一个MYSQl实例最少要增加32个连接(通常都会使用连接池,根据配置的最大连接数,这个连接数可能会放大5~10倍).并且通常一个系统都会分为web,provider,worker等多个应用,这些应用共用一套数据源.随着应用机器数的增加,MYSQL实例的连接数会很快达到上限,这就对系统的扩容造成了阻碍,无法横向的增加机器数,只能纵向的提高机器的配置来应对流量的增长.

作为京东物流的核心系统,业务增长迅速,系统所承接的流量也是逐渐增加,所以急需解决这个制约系统扩展的瓶颈点.

二.分库分表的相关概念介绍

2.1 为什么要分库分表

2.1.1 分库

随着业务的发展,单库中的数据量不断增加,数据库的QPS会越来越高,对数据库的读写耗时也会相应的增长,这时单库的读写性能必然会成为系统的瓶颈点.这时可以通过将单个数据库拆分为多个数据库的方法,来分担数据库的压力,提升性能.同时多个数据库分布在不同的机器上也提高了数据库的可用性.

2.1.2 分表

随着单表数据量的增加,对于数据的查询和更新,即使在数据库底层有一定的优化,但是随着量变必定会引起质变,导致性能急剧下降.这时可以通过分表的方法,将单表数据按一定规则水平拆分到多个表中,减小单表的数据量,提升系统性能.

2.2 sharding-jdbc简介

ShardingSphere

是一套开源的分布式数据库中间件解决方案组成的生态圈,它由Sharding-JDBC、Sharding-Proxy和Sharding-Sidecar(计划中)这3款相互独立的产品组成.他们均提供标准化的数据分片、分布式事务和数据库治理功能,可适用于如Java同构、异构语言、容器、云原生等各种多样化的应用场景。

Sharding-JDBC

定位为轻量级Java框架,在Java的JDBC层提供的额外服务。 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架。

适用于任何基于Java的ORM框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template或直接使用JDBC。基于任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, Druid, HikariCP等。

支持任意实现JDBC规范的数据库。目前支持MySQL,Oracle,SQLServer和PostgreSQL。

我们先看下ShardingSphere官网给出的基于Spring命名空间的规则配置示例:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:sharding="http://shardingsphere.io/schema/shardingsphere/sharding"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://shardingsphere.io/schema/shardingsphere/sharding
http://shardingsphere.io/schema/shardingsphere/sharding/sharding.xsd
">
<!-数据源ds0->
<bean id="ds0" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="url" value="jdbc:mysql://localhost:3306/ds0" />
<property name="username" value="root" />
<property name="password" value="" />
</bean>
<!-数据源ds1->
<bean id="ds1" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
<property name="driverClassName" value="com.mysql.jdbc.Driver" />
<property name="url" value="jdbc:mysql://localhost:3306/ds1" />
<property name="username" value="root" />
<property name="password" value="" />
</bean> <!-分片策略->
<sharding:inline-strategy id="databaseStrategy" sharding-column="user_id" algorithm-expression="ds$->{user_id % 2}" />
<sharding:inline-strategy id="orderTableStrategy" sharding-column="order_id" algorithm-expression="t_order$->{order_id % 2}" />
<sharding:inline-strategy id="orderItemTableStrategy" sharding-column="order_id" algorithm-expression="t_order_item$->{order_id % 2}" /> <!-sharding数据源配置->
<sharding:data-source id="shardingDataSource">
<sharding:sharding-rule data-source-names="ds0,ds1">
<sharding:table-rules>
<sharding:table-rule logic-table="t_order" actual-data-nodes="ds$->{0..1}.t_order$->{0..1}" database-strategy-ref="databaseStrategy" table-strategy-ref="orderTableStrategy" />
<sharding:table-rule logic-table="t_order_item" actual-data-nodes="ds$->{0..1}.t_order_item$->{0..1}" database-strategy-ref="databaseStrategy" table-strategy-ref="orderItemTableStrategy" />
</sharding:table-rules>
</sharding:sharding-rule>
</sharding:data-source>
</beans>

配置总结:

1.需要配置多个数据源ds0,ds1;

2.分片策略中配置分片键(sharding-column)和分片表达式(algorithm-expression)需符合groovy语法;

3.在sharding数据源中sharding:table-rule标签中配置逻辑表名(logic-table),库分片策略(database-strategy-ref)和表分片策略(table-strategy-ref),actual-data-node属性由数据源名 + 表名组成,以小数点分隔,用于广播表;

三.问题分析与解决方案

3.1 问题分析

正如文章开头提到的目前我们的MYSQL集群架构如下,16个MYSQL实例,每个实例有32个库,集群共512个库.当客户端主机启动后与MYSQL_0实例中的32个库连接,分别会建立32个数据源,连接池配置的最大连接数为5,也就是说极端情况下一个客户端与一个MYSQL实例最多会建立32*5=160个连接数.对于物流的一些核心系统在大促时扩容上百台是很常见的,所以很快单个实例的最大连接数就会触达上限.

目前客户端连接连接数据库集群形式如图所示:

3.2 可行方案

我们的目标就是降低单个MYSQL实例的连接数,其中我们共探讨了几种方案如下:

3.2.1 单实例不分库只分表

这样一个客户端与单个数据库实例只需通过一个连接池连接,大大降低了连接数.但这种方案改变了现有的分片规则,需要新建一套数据库集群,根据新规则同步历史数据和增量数据,还有新旧数据验证,但难度和风险最高的还是线上切换过程,可能会造成数据不一致,且一旦出问题回滚方案也会非常复杂.

3.2.2 使用支持弹性扩展的数据库

使用京东的jed,tidb等支持弹性扩展的数据库,将数据同步到新库中,这类数据库的优势是开发人员只需关注业务,不需要再去处理数据库连接这些底层细节.

3.2.3 使用sharding-proxy

Sharding-Proxy的定位是透明化的数据库代理,我们可以在服务器上部署一套Sharding-Proxy,客户端只需连接proxy服务,再由proxy服务器连接MYSQL集群,这样MYSQL集群的连接数只与proxy服务器的数量有关,与客户端解耦.

3.2.4 通过改造sharding-jdbc

理论上我们只要获取数据库实例上某个库的连接,我们就可以通过"库名.表名"的方式访问这台实例上其他库中的数据(当然前提是用户要拥有要访问库的权限),我们是否可以通过改造sharding-jdbc来实现这种访问方式?

以上几种方案,3.2.1和3.2.2都需要新建数据库,同步历史和增量数据,还涉及线上切换数据源,3.2.3需要部署一套proxy服务,并且为了高可用必定要以集群方式部署,这三种方案工作量和风险都较高,我们基于成本最小原则,最终选择改造sharding-jdbc的方案.

3.3 探究sharding-jdbc

3.3.1 工作流程

sharding-jdbc的工作流程可以分为以下步骤:

  • sql解析-词法解析和语法解析;

  • sql路由-根据解析上下文匹配数据库和表的分片策略,并生成路由路径;

  • sql改写-将逻辑SQL改写为在真实数据库中可以正确执行的SQL;

  • sql执行-使用多线程并发执行sql;

  • 结果归并-将从各个数据节点获取的多数据结果集,组合成为一个结果集并正确的返回至请求客户端;

显然数据库和表的分片是在sql路由阶段处理,所以我们以sql路由逻辑为入口分析下源码.

3.3.2 源码分析

ShardingStandardRoutingEngine类中的route方法为计算路由的入口,返回的结果是数据库和表的分片集合:

route方法中的核心逻辑在该类的route0方法中,其中routeDataSources方法负责database路由,routeTables方法负责table路由,实际路由计算在StandardShardingStrategy的doSharding方法中,我们继续深入.

在StandardShardingStrategy类中有两个成员属性,preciseShardingAlgorithm(精准分片算法),rangeShardingAlgorithm(范围分片算法),由于我们的sql都只指定分片键精准查询,使用的都是preciseShardingAlgorithm计算出的结果,PreciseShardingAlgorithm是个接口,那我们就可以实现这个接口来自定义分片算法.

同时在sharding-sphere官网上也找到了相应的标签支持:

所以我们只需要自己实现PreciseShardingAlgorithm接口并配置在标签内即可实现自定义分片策略.

3.4 改造步骤

3.4.1 库分片改造

目前应用配置了ds_0ds_511共512个数据源,我们只需配置ds_0ds_15共16个数据源,每个数据源配置的是单个实例上的第一个库.

对于分片规则,我们可以依然使用sharding:inline-strategy标签,只需对Groovy表达式进行重写,分片键为order_code,之前分片算法为(Math.abs(order_code.hashCode()) % 512)即用order_code列的哈希值对512取模得到0511,我们只需要将结果再整除32即可得到016,即表达式改写为(Math.abs(order_code.hashCode()) % 512).intdiv(32).

改造前分库规则配置:

改造后分库规则配置:

3.4.2 表分片改造

实现PreciseShardingAlgorithm接口,重写表分片算法,使计算结果返回"实际库名+表名"的形式;

例如:查询DB_31库上t_order表的user_id=35711的数据,数据库分片算法返回的数据源为"DB_0",表分片算法返回"DB_31.t_order";

自定义表分片算法:

在xml中定义sharding:standard-strategy标签,其属性precise-algorithm-ref配置为我们自定义的分表算法.

3.4.3 数据库连接池参数调整

改造前是一个库对应一个数据源连接池,改造后一个实例上的32个库共用一个数据源连接池,那么连接池的最大连接数,最小空闲连接数等参数需要相应的做调整.这个需要根据业务流量做合理的评估,当然最严谨的还是要以压测结果作为依据.

改造后客户端连接集群的形式如图:

优化前后数据库集群连接数对比:

四.小插曲

在改写库分片规则的Groovy表达式时,整除32直接在原有表达式上配置"/32"即Math.abs(order_code.hashCode()) % 512 / 32 ,在调试中发现执行sql会报"no database route info"错误信息,经过debug发现sharding-jdbc计算分片规则时会出现小数(例如:ds_14.6857),导致找不到数据源,这是因为Groovy没有提供专用的整数除法运算符,所以要用.intdiv()方法,最终表达式改写为(Math.abs(order_code.hashCode()) % 512).intdiv(32).

五.总结

本文介绍了分库分表的概念及优势,以及sharding-jdbc分库分表中间件,探究了sharding-jdbc的路由规则的执行流程.当然在系统设计之初,对于数据库的分库分表,到底需不需要做?是多分库好还是多分表好?并没有一个放之四海而皆准的法则,需结合系统的特点(例如qps,tps,单表数据量,磁盘规格,数据保留时间,业务增量,数据冷热方案等因素)来决策权衡,有利有弊才需决策,有取有舍才需权衡.

作者:京东物流 张仲良

来源:京东云开发者社区 自猿其说Tech

sharding-jdbc分库连接数优化的更多相关文章

  1. Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表

    Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表 交易所流水表的单表数据量已经过亿,选用Sharding-JDBC进行分库分表.MyBatis-P ...

  2. Spring boot项目集成Sharding Jdbc

    环境 jdk:1.8 framework: spring boot, sharding jdbc database: MySQL 搭建步骤 在pom 中加入sharding 依赖 <depend ...

  3. sharding jdbc(sphere) 3.1.0 spring boot配置

    sharding jdbc 2.x系列详解参见https://www.cnblogs.com/zhjh256/p/9221634.html. 最近将sharding jdbc的配置从xml切换到了sp ...

  4. spring boot:配置shardingsphere(sharding jdbc)使用druid数据源(druid 1.1.23 / sharding-jdbc 4.1.1 / mybatis / spring boot 2.3.3)

    一,为什么要使用druid数据源? 1,druid的优点 Druid是阿里巴巴开发的号称为监控而生的数据库连接池 它的优点包括: 可以监控数据库访问性能 SQL执行日志 SQL防火墙 但spring ...

  5. Sharding jdbc 强制路由策略(HintShardingStrategy)使用记录

    背景 随着项目运行时间逐渐增加,数据库中的数据也越来越多,虽然加索引,优化查询,但是数据量太大,还是会影响查询效率,也给数据库增加了负载. 再加上冷数据基本不使用的场景,决定采用分表来处理数据,从而来 ...

  6. 记录因Sharding Jdbc批量操作引发的一次fullGC

    周五晚上告警群突然收到了一条告警消息,点开一看,应用 fullGC 了. 于是赶紧联系运维下载堆内存快照,进行分析. 内存分析 使用 MemoryAnalyzer 打开堆文件 mat 下载地址:htt ...

  7. 使用jmeter进行压力测试与nginx连接数优化

    案例训练目标 学会使用jmeter工具 学会配置nginx连接数优化 包含技能点 使用jmeter做压力测试 配置nginx的并发连接数 环境要求 PC支持VT,4G内存以上:vmware虚拟机安装有 ...

  8. 浅谈sharding jdbc

    定位为轻量级Java框架,在Java的JDBC层提供的额外服务. 它使用客户端直连数据库,以jar包形式提供服务,无需额外部署和依赖,可理解为增强版的JDBC驱动,完全兼容JDBC和各种ORM框架. ...

  9. Sharding JDBC案例实战

    基础分库 以下实例基于shardingsphere 4.1.0 + SpringBoot 2.2.5.RELEASE版本 依赖导入: <properties> <project.bu ...

  10. JDBC批量插入优化addbatch

    // 获取要设置的Arp基准的List后,插入Arp基准表中 public boolean insertArpStandardList(List<ArpTable> list) { Con ...

随机推荐

  1. Yolov8离谱报错

    YoloV8离谱报错 ​ 今天下午给一个研究生小姐姐跑数据集,用的是yolov8在恒源云上租的4070的GPU服务器,跑垃圾分类数据集(https://blog.csdn.net/m0_5488250 ...

  2. 1748E Yet Another Array Counting Problem

    1748E Yet Another Array Counting Problem 目录 1748E Yet Another Array Counting Problem 题目大意: 做法 code 题 ...

  3. windows下MinGW编译ffmpeg

    windows下MinGW编译ffmpeg 1.官网下载MinGW并安装       1)下载 ,下载网址: https://sourceforge.net/projects/mingw/files/ ...

  4. vue2路由导航守卫(钩子函数)

    https://router.vuejs.org/zh/guide/advanced/navigation-guards.html#%E5%85%A8%E5%B1%80%E5%89%8D%E7%BD% ...

  5. 一文吃透Tomcat核心知识点

    架构 首先,看一下整个架构图.最全面的Java面试网站 接下来简单解释一下. Server:服务器.Tomcat 就是一个 Server 服务器. Service:在服务器中可以有多个 Service ...

  6. SSH客户端常用工具SecureCRT操作

    目录 1.1 SecureCRT工具介绍 1.2 SecureCRT工具安装 1.3配置SecureCRT连接Linux主机 1.4调整SecureCRT终端显示和回滚缓冲区大小 1.5调整字体及光标 ...

  7. 记一次 .NET 某车零件MES系统 登录异常分析

    一:背景 1. 讲故事 这个案例有点特殊,以前dump分析都是和软件工程师打交道,这次和非业内人士交流,隔行如隔山,从指导dump怎么抓到问题解决,需要一个强大的耐心. 前几天有位朋友在微信上找到我, ...

  8. vue全家桶进阶之路20:ECMAScript脚本语言规范

    ECMAScript(简称 ES)是一种由 Ecma 国际组织定义的脚本语言标准,它定义了 JavaScript 语言的基本规范和特性.JavaScript 是一种基于 ECMAScript 标准的编 ...

  9. MMCM and PLL Dynamic Reconfiguration

    Reconfiguration is performed through the DRP. The DRP provides access to the configuration bits that ...

  10. 数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇)[xgboots/lightgbm/Catboost等模型]--模型融合:stacking、blending

    数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇)[xgboots/lightgbm/Catboost等模型]--模型融合:stacking.blending 1.赛题简介 赛题以金融风控 ...