MindSpore 计算框架 模型参数 和 优化器 参数的重新载入
本文主要内容源于:
======================================================================
本地加载模型
用于推理验证
针对仅推理场景可以使用load_checkpoint
把参数直接加载到网络中,以便进行后续的推理验证。
示例代码如下:
resnet = ResNet50()
load_checkpoint("resnet50-2_32.ckpt", net=resnet)
dateset_eval = create_dataset(os.path.join(mnist_path, "test"), 32, 1) # define the test dataset
loss = CrossEntropyLoss()
model = Model(resnet, loss, metrics={"accuracy"})
acc = model.eval(dataset_eval)
load_checkpoint
方法会把参数文件中的网络参数加载到模型中。加载后,网络中的参数就是CheckPoint保存的。eval
方法会验证训练后模型的精度。
用于迁移学习
针对任务中断再训练及微调(Fine Tune)场景,可以加载网络参数和优化器参数到模型中。
示例代码如下:
# return a parameter dict for model
param_dict = load_checkpoint("resnet50-2_32.ckpt")
resnet = ResNet50()
opt = Momentum(resnet.trainable_params(), 0.01, 0.9)
# load the parameter into net
load_param_into_net(resnet, param_dict)
# load the parameter into optimizer
load_param_into_net(opt, param_dict)
loss = SoftmaxCrossEntropyWithLogits()
model = Model(resnet, loss, opt)
model.train(epoch, dataset)
load_checkpoint
方法会返回一个参数字典。load_param_into_net
会把参数字典中相应的参数加载到网络或优化器中。
================================================================
由上面内容可以知道,以下两个函数:
load_checkpoint
load_param_into_net
可以把保存为ckpt文件中的参数重新加载到网络和优化器中。
给出demo, 数据文件下载参考前文:
模型参数 和 优化器参数的保存:
#!/usr/bin python
# encoding:UTF-8 """" 对输入的超参数进行处理 """
import os
import argparse """ 设置运行的背景context """
from mindspore import context """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal """ 训练时对模型参数的保存 """
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore.train.callback import LossMonitor
from mindspore import Model import os
os.system('rm -f *.ckpt *.meta') parser = argparse.ArgumentParser(description='MindSpore LeNet Example')
parser.add_argument('--device_target', type=str, default="CPU", choices=['Ascend', 'GPU', 'CPU']) args = parser.parse_known_args()[0] # 为mindspore设置运行背景context
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
""" def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5() # 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9) # 设置模型保存参数
# 每125steps保存一次模型参数,最多保留15个文件
config_ck = CheckpointConfig(save_checkpoint_steps=125, keep_checkpoint_max=15)
# 应用模型保存参数
ckpoint = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) def train_net(args, model, epoch_size, data_path, repeat_size, ckpoint_cb, sink_mode):
"""定义训练的方法"""
# 加载训练数据集
ds_train = create_dataset(os.path.join(data_path, "train"), 32, repeat_size)
model.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(125)], dataset_sink_mode=sink_mode) def test_net(network, model, data_path):
"""定义验证的方法"""
ds_eval = create_dataset(os.path.join(data_path, "test"))
acc = model.eval(ds_eval, dataset_sink_mode=False)
print("{}".format(acc)) mnist_path = "./datasets/MNIST_Data"
train_epoch = 1
dataset_size = 1
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) train_net(args, model, train_epoch, mnist_path, dataset_size, ckpoint, False)
test_net(net, model, mnist_path)
生成的参数文件:
其中, ckpt 类型的文件保存的是 网络参数 和 优化器参数, 而 .meta 文件保存的是计算图的编译后的文件,不过 meta 文件具体怎么用这里还是不了解的,具体深入关注可以参考帖子:
https://bbs.huaweicloud.com/forum/forum.php?mod=viewthread&tid=138966&page=1#pid1240965
在网络和优化器初始化后(不载入备份的网络参数 和 优化器参数情况下), 打印优化器的最后一个参数, moments.fc3.bias :
import os
import numpy as np """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal
from mindspore import Tensor # 导入模型参数
from mindspore.train.serialization import load_checkpoint, load_param_into_net """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore import Model
from mindspore import context context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
"""
def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5()
# 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9)
# 构建模型
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) # 加载已经保存的用于测试的模型
param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt")
# 加载参数到网络中
load_param_into_net(net, param_dict)
# 加载参数到优化器中
#load_param_into_net(net_opt, param_dict) _batch_size = 8
# 定义测试数据集,batch_size设置为1,则取出一张图片
mnist_path = "./datasets/MNIST_Data"
ds_test = create_dataset(os.path.join(mnist_path, "test"), batch_size=_batch_size)
print(model.eval(ds_test)) print(type(net.parameters_and_names()))
for i, j in net_opt.parameters_and_names():
print(i)
if i == "moments.fc3.bias":
print(Tensor(j))
运行结果:
WARNING: 'ControlDepend' is deprecated from version 1.1 and will be removed in a future version, use 'Depend' instead.
[WARNING] ME(13133:139644169384064,MainProcess):2021-07-12-03:29:50.183.802 [mindspore/ops/operations/array_ops.py:2302] WARN_DEPRECATED: The usage of Pack is deprecated. Please use Stack.
{'Accuracy': 0.9594}
<class 'generator'>
learning_rate
conv1.weight
conv2.weight
fc1.weight
fc1.bias
fc2.weight
fc2.bias
fc3.weight
fc3.bias
momentum
moments.conv1.weight
moments.conv2.weight
moments.fc1.weight
moments.fc1.bias
moments.fc2.weight
moments.fc2.bias
moments.fc3.weight
moments.fc3.bias
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
可以看到,优化器的最后一个参数为全0, 那么载入备份的参数后呢:
import os
import numpy as np """ 构建神经网络 """
import mindspore.nn as nn
from mindspore.common.initializer import Normal
from mindspore import Tensor # 导入模型参数
from mindspore.train.serialization import load_checkpoint, load_param_into_net """ 对数据集进行预处理 """
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
from mindspore.dataset.vision import Inter
from mindspore import dtype as mstype """ 导入模型训练需要的库 """
from mindspore.nn import Accuracy
from mindspore import Model
from mindspore import context context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
# 定义数据集
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081 # 定义所需要操作的map映射
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32) # 使用map映射函数,将数据操作应用到数据集
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # 进行shuffle、batch、repeat操作
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size)
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size) return mnist_ds class LeNet5(nn.Cell):
"""
Lenet网络结构
"""
def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
# 定义所需要的运算
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten() def construct(self, x):
# 使用定义好的运算构建前向网络
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x # 实例化网络
net = LeNet5()
# 定义损失函数
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# 定义优化器
net_opt = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9)
# 构建模型
model = Model(net, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) # 加载已经保存的用于测试的模型
param_dict = load_checkpoint("checkpoint_lenet-1_1875.ckpt")
# 加载参数到网络中
load_param_into_net(net, param_dict)
# 加载参数到优化器中
load_param_into_net(net_opt, param_dict) _batch_size = 8
# 定义测试数据集,batch_size设置为1,则取出一张图片
mnist_path = "./datasets/MNIST_Data"
ds_test = create_dataset(os.path.join(mnist_path, "test"), batch_size=_batch_size)
print(model.eval(ds_test)) print(type(net.parameters_and_names()))
for i, j in net_opt.parameters_and_names():
print(i)
if i == "moments.fc3.bias":
print(Tensor(j))
运行结果:
WARNING: 'ControlDepend' is deprecated from version 1.1 and will be removed in a future version, use 'Depend' instead.
[WARNING] ME(13292:140444628824192,MainProcess):2021-07-12-03:31:50.471.228 [mindspore/ops/operations/array_ops.py:2302] WARN_DEPRECATED: The usage of Pack is deprecated. Please use Stack.
{'Accuracy': 0.9594}
<class 'generator'>
learning_rate
conv1.weight
conv2.weight
fc1.weight
fc1.bias
fc2.weight
fc2.bias
fc3.weight
fc3.bias
momentum
moments.conv1.weight
moments.conv2.weight
moments.fc1.weight
moments.fc1.bias
moments.fc2.weight
moments.fc2.bias
moments.fc3.weight
moments.fc3.bias
[-0.00917954 0.00276246 -0.01406308 0.01492264 -0.01100682 -0.0692124
0.02251344 0.00341095 0.03600671 0.02384563]
可以看到,载入备份的优化器参数后,打印结果与之前不同了。
MindSpore 计算框架 模型参数 和 优化器 参数的重新载入的更多相关文章
- PyTorch官方中文文档:torch.optim 优化器参数
内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...
- Oracle 查看相关优化器参数
select x.ksppinm name, y.ksppstvl value, y.ksppstdf isdefault, decode(bitand(y.ksppstvf, 7), 1, 'MOD ...
- keras RAdam优化器使用教程, keras加载模型包含自定义优化器报错 如何解决?
本文首发于个人博客https://kezunlin.me/post/c691f02b/,欢迎阅读最新内容! python keras RAdam tutorial and load custom op ...
- [源码解析] PyTorch分布式优化器(1)----基石篇
[源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0 ...
- [源码解析] PyTorch分布式优化器(2)----数据并行优化器
[源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之 ...
- optimizer_mode优化器模式
查询优化器最主要的工作就是接受输入的SQL以及各种环境参数.配置参数,生成合适的SQL执行计划(Execution Plan). Query Optimizer一共经历了两个历史阶段: RBO: Ru ...
- Python带参数的装饰器
在装饰器函数里传入参数 # -*- coding: utf-8 -*- # 2017/12/2 21:38 # 这不是什么黑魔法,你只需要让包装器传递参数: def a_decorator_passi ...
- MindSpore 高阶优化器
MindSpore 高阶优化器 MindSpore自研优化器THOR(Trace-based Hardware-driven layer-ORiented Natural Gradient Desce ...
- [源码解析] PyTorch分布式优化器(3)---- 模型并行
[源码解析] PyTorch分布式优化器(3)---- 模型并行 目录 [源码解析] PyTorch分布式优化器(3)---- 模型并行 0x00 摘要 0x01 前文回顾 0x02 单机模型 2.1 ...
- QuantLib 金融计算——数学工具之优化器
目录 QuantLib 金融计算--数学工具之优化器 概述 Optimizer Constraint OptimizationMethod EndCriteria 示例 Rosenbrock 问题 校 ...
随机推荐
- mysql 8.0 客户端
1.mysql 8.0 command line client 2.mysql workbench
- Flink状态(二)
Flink提供了不同的状态存储方式,并说明了状态如何存和存储在哪里. 状态可以被存储在Jvm的堆和堆外.根据状态存储方式的不同,Flink也能代替应用管理状态,意思是Flink能够进行内存管理(有必要 ...
- Jenkins的搭建及配置
一.搭建Jenkins及Jenkins的配置 1.从搭建Jenkins开始: 采用的时下载jenkins.msi,下载安装包,然后进行安装的方式,下载Jenkins的地址:https://www.je ...
- 2019 南昌区域赛 CEGLM 题解 & lagrange 插值
B. A Funny Bipartite Graph 状压 dp ,利用了原题中选完左边点集,那么右边在 左边编号最大的那个数 之前的所有点都要选的性质,可以优化到 \(O(n \cdot 2^n)\ ...
- Log4Net配置详解及输出自定义消息类示例
1.简单使用实例 1.1 添加log4net.dll的引用. 在NuGet程序包中搜索log4net并添加,此次我所用版本为2.0.17.如下图: 1.2 添加配置文件 右键项目,添加新建项, ...
- Salt安装部署
Salt安装部署 一:salt简介 早期运维人员会根据自己的生产环境来写特定脚本完成大量重复性工作,这些脚本复杂且难以维护.系统管理员面临的问题主要是1.系统配置管理,2.远程执行命令,因此诞生了 ...
- ubuntu20 python2 通过安装包安装mysql-python
前言 众里寻他千百度,蓦然回首,那人却在灯火阑珊处. 最近要测试一个python2环境的代码,其中用到了MySQLdb, 查询网络,发现要安装mysql-python,于是就进行了一番艰难的探索,现在 ...
- 2. 标签上 title 与 alt 属性的区别是什么?
1. alt 是给搜索引擎识别,在图像无法显示时的替代文本2. title 是关于元素的注释信息,主要是给用户解读.3.当鼠标放到文字或是图片上时有 title 文字显示.(因为 IE 不标准)在 I ...
- 论文阅读: 面向Planning的端到端智驾Planning-oriented Autonomous Driving
原文地址:https://arxiv.org/abs/2212.10156 背景 当代自动驾驶系统多采用序列化的模块化的任务处理方式,比如感知.预测.规划等.为了处理多样的任务.达到高水平智能,当代智 ...
- 基于JQ使用原生js构造一个自动回复随机消息的机器人
某些业务会使用到页面里存在一个机器人,类似于假客服一样,可以回复游客的问题. 那么如何自己写一个自动回复消息的机器人呢? 源码献上 /** * 基于jq的自动对话机器人 * @param {Objec ...