假设你有一家理发店,已经记录了过去一年中所有顾客的头发长度和发型偏好的数据。现在你想从这些数据中提取一些主要的信息,比如顾客最常选择的发型类型,以及不同发型之间的相关性等。这对于你未来开展有针对性的营销活动很有帮助。

具体来说,我们可以将每个顾客的发型偏好用一个多维向量来表示,每一维度对应一种发型类型的喜好程度(比如评分1-5分)。这样,所有顾客就形成了一个海量的、高维的数据集。

这时候,我们可以对这个数据集进行主成分分析(PCA)。PCA的核心就是找到数据的主要特征向量,即那些能够最大程度解释数据方差的方向向量。

例如,假设经过PCA分析,发现主要有两个显著的特征向量:

  • 第一个特征向量对应"时尚发型"这个主成分
  • 第二个特征向量对应"保守发型"这个主成分

沿着这两个特征向量方向投影,就可以非常准确地还原出原始的高维数据。

这意味着,尽管原始数据有很多维度(发型类型),但是顾客的实际偏好可以用"时尚发型"和"保守发型"这两个主成分来概括和解释。

利用这两个主要特征向量,你可以:

  • 分析哪些具体发型类型属于时尚型或保守型
  • 根据客户的偏好,将他们分成偏好时尚的群体和偏好保守的群体
  • 针对不同群体制定不同的营销策略和发型组合

所以,通过PCA分析得到的特征向量,可以帮助我们从高维复杂的数据中提取出主要的信息,发现数据背后的内在结构和群体特征,从而指导后续的决策。

计算过程

一个主成分分析(PCA)的具体计算过程示例。我们继续用理发店的发型偏好数据作为例子。

假设我们有5个顾客,每个顾客对5种发型(A,B,C,D,E)的喜好程度用1-5分评分,数据如下:

顾客1: [5, 4, 2, 1, 3]
顾客2: [4, 5, 1, 2, 3]
顾客3: [2, 1, 5, 4, 3]
顾客4: [1, 2, 4, 5, 2]
顾客5: [3, 3, 3, 3, 3]

我们的目标是找到能最大程度解释这些数据方差的主要特征向量。计算步骤如下:

  1. 将原始数据矩阵X中心化(去均值),得到均值为0的矩阵
  2. 计算X的协方差矩阵: Σ = (1/n) * X^T * X (n为样本数)
  3. 计算协方差矩阵Σ的特征值和对应的特征向量
  4. 将特征向量按照对应的特征值大小从高到低排序
  5. 选取前k个最大的特征值对应的特征向量作为主成分

具体计算:

  1. 去均值后的X矩阵为:
   [2   1 -1 -2   0 ]
[1 2 -2 -1 0 ]
[-1 -2 2 1 0 ]
[-2 -1 1 2 -1 ]
[0 0 0 0 0 ]
  1. 计算协方差矩阵Σ:
   [3.2  0.8 -0.8 -0.8 -0.8]
[0.8 3.2 -0.8 -0.8 -0.8]
[-0.8 -0.8 3.2 0.8 0.8]
[-0.8 -0.8 0.8 3.2 0.8]
[-0.8 -0.8 0.8 0.8 0.8]
  1. 计算Σ的特征值和对应特征向量(略去具体过程):

    特征值1 = 6.828, 对应特征向量v1 = [0.456, 0.456, -0.456, -0.456, -0.364]

    特征值2 = 2.172, 对应特征向量v2 = [0.556, -0.282, -0.282, 0.718, 0.166]

    ...

  2. 由于前两个特征值最大,所以选取v1和v2作为主成分

  3. v1对应"时尚发型"的主成分, v2主要对应"保守发型"

通过将原始5维数据投影到由v1和v2张成的2维空间,就能很好地概括原始数据的主要模式和差异。

通过矩阵运算来计算每个数据点在v1和v2方向上的投影分量。

投影分量计算

原始的5维数据为X = (x1, x2, x3, x4, x5),其中x1-x5分别是顾客对5种发型的评分。

现在我们想将X投影到由v1和v2张成的2维平面上,可以通过下面的矩阵运算:

X' = [v1 v2]T * X

其中:

  • v1 = [0.456, 0.456, -0.456, -0.456, -0.364]
  • v2 = [0.556, -0.282, -0.282, 0.718, 0.166 ]
  • [v1 v2]T 是一个2x5的矩阵,每行就是v1和v2 , T表示矩阵的转置(Transpose)运算
  • X是原始5维数据
  • X'是投影后的2维数据

具体运算就是:

  1. 先将v1和v2并列成一个2x5矩阵
  2. 将X当成一个5x1的列向量
  3. 通过矩阵乘法 [v1 v2]T * X 得到结果X'
  4. 计算的结果X' = (x1', x2')是一个2x1的向量,其中x1'就是X在v1方向的投影分量,x2'就是X在v2方向的投影分量。

通过这样的矩阵投影运算,我们就能将任意一个原始5维数据X,映射到一个二维坐标点(x1',x2')上。

不同顾客对应的二维坐标点(x1',x2')分布在2D平面上,散点分布的模式就能很好地展示:

  • 在v1(时尚发型)方向投影的点,代表偏好时尚发型
  • 在v2(保守发型)方向投影的点,代表偏好保守发型
  • 在两个方向上都投影值较小的点,代表比较中性的顾客;

这种将原始高维数据投影到主成分2维平面的方法,我们既降低了维度,又能很好地保留和展示数据中的主要模式和差异信息,这正是PCA的精髓所在。

这个例子展示了如何通过PCA的数学计算过程,从复杂数据中发现主要的特征向量,并利用它们提取主成分信息。

主成分分析(PCA)介绍的更多相关文章

  1. 主成分分析PCA的前世今生

    这篇博客会以攻略形式介绍PCA在前世今生. 其实,主成分分析知识一种分析算法,他的前生:应用场景:后世:输出结果的去向,在网上的博客都没有详细的提示.这里,我将从应用场景开始,介绍到得出PCA结果后, ...

  2. 降维(一)----说说主成分分析(PCA)的源头

    降维(一)----说说主成分分析(PCA)的源头 降维系列: 降维(一)----说说主成分分析(PCA)的源头 降维(二)----Laplacian Eigenmaps --------------- ...

  3. 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA

    本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...

  4. 一步步教你轻松学主成分分析PCA降维算法

    一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...

  5. 主成分分析(PCA)原理及推导

    原文:http://blog.csdn.net/zhongkejingwang/article/details/42264479 什么是PCA? 在数据挖掘或者图像处理等领域经常会用到主成分分析,这样 ...

  6. 主成分分析(PCA)

    相对与网上很多人分享的有关PCA的经历,我第一次接触PCA却不是从人脸表情识别开始的,但我所在的实验室方向之一是人脸的研究,最后也会回到这个方向上来吧. PCA(principal component ...

  7. K-L变换和 主成分分析PCA

    一.K-L变换 说PCA的话,必须先介绍一下K-L变换了. K-L变换是Karhunen-Loeve变换的简称,是一种特殊的正交变换.它是建立在统计特性基础上的一种变换,有的文献也称其为霍特林(Hot ...

  8. 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射

    机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...

  9. 主成分分析PCA数据降维原理及python应用(葡萄酒案例分析)

    目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识P ...

  10. 运用sklearn进行主成分分析(PCA)代码实现

    基于sklearn的主成分分析代码实现 一.前言及回顾 二.sklearn的PCA类介绍 三.分类结果区域可视化函数 四.10行代码完成葡萄酒数据集分类 五.完整代码 六.总结 基于sklearn的主 ...

随机推荐

  1. 《Effective C#》系列之(五)——优化集合的使用

    一.优化集合的使用 在<Effective C#>这本书中,优化集合的使用是其中一章的内容.以下是该章节的一些核心建议,以及使用C#代码示例说明: 使用泛型集合:泛型集合可以避免装箱和拆箱 ...

  2. 力扣118(java)-杨辉三角(简单)

    题目: 给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行. 在「杨辉三角」中,每个数是它左上方和右上方的数的和. 示例 1: 输入: numRows = 5输出: [[1], ...

  3. es实战-使用IK分词器进行词频统计

    ​简介:通过IK分词器分词并生成词云. 本文主要介绍如何通过 IK 分词器进行词频统计.使用分词器对文章的词频进行统计,主要目的是实现如下图所示的词云功能,可以找到文章内的重点词汇.后续也可以对词进行 ...

  4. 网关流控利器:结合 AHAS 实现 Ingress/Nginx 流量控制

    ​简介:微服务的稳定性一直是开发者非常关注的话题.随着业务从单体架构向分布式架构演进以及部署方式的变化,服务之间的依赖关系变得越来越复杂,业务系统也面临着巨大的高可用挑战. 作者:涂鸦 微服务的稳定性 ...

  5. 独家深度 | 一文看懂 ClickHouse vs Elasticsearch:谁更胜一筹?

    简介: 本文的主旨在于通过彻底剖析ClickHouse和Elasticsearch的内核架构,从原理上讲明白两者的优劣之处,同时会附上一份覆盖多场景的测试报告给读者作为参考. 作者:阿里云数据库OLA ...

  6. 时序数据库永远的难关 — 时间线膨胀(高基数 Cardinality)问题的解决方案

    ​简介: 本文主要讨论 influxdb 在遇到写入的数据出现高基数 Cardinality 问题时,一些可行的解决方案. 作者 | 徐建伟 (竹影) 前序 随着移动端发展走向饱和,现在整个 IT 行 ...

  7. 检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统

    检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统 什么是 RAG LLM 会产生误导性的 "幻觉",依赖的信息可能过时,处理特定知识时效率不高, ...

  8. gorm 关系一对一,一对多,多对多查询

    gorm 关系一对一,一对多,多对多查询 gorm v2版本 Belongs To mysql表 CREATE TABLE `user` ( `id` int(11) NOT NULL AUTO_IN ...

  9. docker-compose搭建的Mysql主主复制

    注意下面几点: 1)要保证同步服务期间之间的网络联通.即能相互`ping`通,能使用对方授权信息连接到对方数据库(防火墙开放3306端口). 2)关闭selinux. 3)同步前,双方数据库中需要同步 ...

  10. Golang 版本 支付宝支付SDK app支付接口2.0

    参考技术贴: https://blog.csdn.net/ming2316780/article/details/86505883 对接文档: https://opendocs.alipay.com/ ...