题目

求\(\sum_{i=l}^r\mu(i),r-l\leq 10^5,1\leq l\leq r\leq 10^{18}\)


分析

其实有一道可以算是弱化版的题目

这种类型的tricks就是枚举质数然后将\([l,r]\)中该质数的倍数算莫比乌斯函数(比如说)

但这道题恰恰恶心在无法将所有在根号内的质数都算出来,

考虑如果\([l,r]\)中存在一个数按照刚才的方法还剩下一个完全平方数,那么莫比乌斯函数为0,

如果按照刚才的方法还剩下一个质数,那就得用Miller-Rabin判断,符号取反;

如果是一个合数,那么它显然是由两个质数相乘得到的,符号不变。

时间复杂度\(O((r-l)\log(r-l))\)(不愧是小清新数学题)


代码

#include <cstdio>
#include <cmath>
#define rr register
using namespace std;
typedef long long lll;
const int P[5]={2,3,7,61,24251},N=1000011;
int prime[N],v[N],mu[N],cnt,ans; lll f[N],l,r;
inline lll mul(lll a,lll b,lll mod){return (a*b-(lll)((long double)a/mod*b)*mod+mod)%mod;}
inline lll ksm(lll x,lll y,lll mod){
rr lll ans=1;
for (;y;y>>=1,x=mul(x,x,mod))
if (y&1) ans=mul(ans,x,mod);
return ans;
}
inline bool mr(lll n){
if(n==46856248255981ll||n<2) return 0;
if(n==2||n==3||n==7||n==61||n==24251) return 1;
if (!(n&1)||!(n%3)||!(n%7)||!(n%61)||!(n%24251)) return 0;
rr lll m=n-1; rr int Cnt=0;
while (!(m&1)) m>>=1,++Cnt;
for (rr int i=0;i<5&&P[i]<n;++i){
rr lll now=ksm(P[i],m,n),last=now;
for (rr int j=1;j<=Cnt;++j){
now=mul(now,now,n);
if (now==1&&last!=1&&last!=n-1) return 0;
last=now;
}
if (now!=1) return 0;
}
return 1;
}
signed main(){
scanf("%lld%lld",&l,&r);
for (rr int i=2;i<N;++i){
if (!v[i]) prime[++cnt]=i;
for (rr int j=1;j<=cnt&&prime[j]*i<N;++j){
v[i*prime[j]]=1;
if (i%prime[j]==0) break;
}
}
for (rr lll i=l;i<=r;++i) mu[i-l]=1,f[i-l]=i;
for (rr int i=1;i<=cnt;++i){
rr int I=prime[i];
for (rr lll j=((l-1)/I+1)*I;j<=r;j+=I){
rr int CNT=0;
while (f[j-l]%I==0) ++CNT,f[j-l]/=I;
if (CNT>1) mu[j-l]=0; else mu[j-l]*=-1;//指数大于1莫比乌斯函数为0,否则取反
}
}
for (rr lll i=l;i<=r;++i)
if (f[i-l]>1){
if (floor(sqrt(f[i-l]))==sqrt(f[i-l])) mu[i-l]=0;//完全平方数为0
else if (mr(f[i-l])) mu[i-l]*=-1;//质数符号取反
ans+=mu[i-l];
}else ans+=mu[i-l];
return !printf("%d",ans);
}

#莫比乌斯函数,Miller-Rabin#洛谷 3653 小清新数学题的更多相关文章

  1. 洛谷P3676 小清新数据结构题 【树剖 + BIT】

    题目链接 洛谷P3676 题解 我们先维护\(1\)为根的答案,再考虑换根 一开始的答案可以\(O(n)\)计算出来 考虑修改,记\(s[u]\)表示\(u\)为根的子树的权值和 当\(u\)节点产生 ...

  2. 洛谷 P3676 - 小清新数据结构题(动态点分治)

    洛谷题面传送门 题目名称好评(实在是太清新了呢) 首先考虑探究这个"换根操作"有什么性质.我们考虑在换根前后虽然每个点的子树会变,但整棵树的形态不会边,换句话说,割掉每条边后,得到 ...

  3. 洛谷 P3672 小清新签到题 [DP 排列]

    传送门 题意:给定自然数n.k.x,你要求出第k小的长度为n的逆序对对数为x的1~n的排列 $n \le 300, k \le 10^13$ 一下子想到hzc讲过的DP 从小到大插入,后插入不会对前插 ...

  4. [洛谷P3672]小清新签到题

    题目描述 题目还是简单一点好. 给定自然数n.k.x,你要求出第k小的长度为n的逆序对对数为x的1~n的排列a1,a2...an,然后用仙人图上在线分支定界启发式带花树上下界最小费用流解决问题,保证存 ...

  5. 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]

    传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...

  6. 洛谷P3674 小清新人渣的本愿

    题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...

  7. 洛谷P3676 小清新数据结构题 [动态点分治]

    传送门 思路 这思路好妙啊! 首先很多人都会想到推式子之后树链剖分+线段树,但这样不够优美,不喜欢. 脑洞大开想到这样一个式子: \[ \sum_{x} sum_x(All-sum_x) \] 其中\ ...

  8. 洛谷P3676 小清新数据结构题(动态点分治+树链剖分)

    传送门 感觉这题做下来心态有点崩……$RMQ$求$LCA$没有树剖快我可以理解为是常数太大……然而我明明用了自以为不会退化的点分然而为什么比会退化的点分跑得反而更慢啊啊啊啊~~~ 先膜一波zsy大佬 ...

  9. 【刷题】洛谷 P3676 小清新数据结构题

    题目背景 本题时限2s,内存限制256M 题目描述 在很久很久以前,有一棵n个点的树,每个点有一个点权. 现在有q次操作,每次操作是修改一个点的点权或指定一个点,询问以这个点为根时每棵子树点权和的平方 ...

  10. 洛谷P3674 小清新人渣的本愿(莫队)

    传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...

随机推荐

  1. 2021-09-15 JavaScript中强制将某个未知类型变量转成基础数据类型

    为什么要强制将某个未知类型变量转成基础数据类型? 实际业务场景里,一个变量的数据是否合法或符合预期,会影响到自己的代码的可靠性.比如在别人使用自己写的自定义函数,而自己写的函数中的一些值是需要对入参严 ...

  2. GROW模型:世界上最常用的教练模型(**案例及全套表单)

    http://www.360doc.com/content/21/0812/18/76566468_990752480.shtml <高绩效教练>一书的核心方法就是GROW模型. GROW ...

  3. OpenCV开发笔记(六十三):红胖子8分钟带你深入了解SIFT特征点(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  4. DataGear 自定义数据可视化看板的图表主题

    DataGear 看板的 dg-chart-theme 属性,提供了简单且强大的自定义图表主题功能. 通常,只需要设置其color.backgroundColor.actualBackgroundCo ...

  5. Netty笔记(7) - 使用Netty 模仿 Dubbo 实现简单的 远程调用

    使用Netty 模仿 Dubbo 实现简单的 远程调用 使用 java的反射 动态代理 加 Netty的远程访问 实现根据接口的RPC 远程调用 定义两个公共接口: public interface ...

  6. 那些.NET中的连接池

    前言 在.NET中,连接池被广泛用于管理和优化不同类型资源的连接.连接池可以减少建立和关闭连接所需的时间和资源消耗,从而提高了应用程序的性能和响应能力. HttpClient中的连接池 System. ...

  7. Springboot中-全局异常处理类用法示例

    使用springboot搭建web项目的时候,一般都会添加一个全局异常类,用来统一处理各种自定义异常信息, 和其他非自定义的异常信息,以便于统一返回错误信息.下面就是简单的示例代码, 自定义异常信息. ...

  8. iview 表单验证 爆红后,有某些组件现隐,爆红和必填会错位,解决方案 组件上加key

    iview 表单验证 爆红后,有某些组件现隐,爆红和必填会错位,解决方案 组件上加key

  9. stars-one的原创工具——文档生成器

    Github 可以快速生成静态页面文档的工具,适用于文档翻译或者是个人项目,个人开发者可以快速将生成的静态页面部署在gitee或者github上 优点 规范 使用流行的markdown格式编写文档 美 ...

  10. AsyncTask异步任务类

    目录介绍 01.先看下AsyncTask用法 02.AsyncTask源码深入分析 2.1 构造方法源码分析 2.2 看execute(Params... params)方法 2.3 mWorker和 ...