C# 排序算法5:归并排序
归并排序,是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个有序的子序列,再把有序的子序列合并为整体有序序列。该算法是采用分治法。
原理:
1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2.设定两个指针,最初位置分别为两个已经排序序列的起始位置
3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
4.重复步骤3直到某一指针超出序列尾,将另一序列剩下的所有元素直接复制到合并序列尾
图示:

上图中首先把一个未排序的序列从中间分割成2部分,再把2部分分成4部分,依次分割下去,直到分割成一个一个的数据,再把这些数据两两归并到一起,使之有序,不停的归并,最后成为一个排好序的序列。
static int[] MergeSort(int[] arr,int lowIndex,int highIndex)
{
//子表的长度大于1,则进入下面的递归处理
if (lowIndex <highIndex)
{
//分割位点midIndex
int midIndex = (lowIndex + highIndex) / 2; //递归划分二部分 (arr[lowIndex].....arr[midIndex]) 、 (arr[midIndex+1].....arr[high])
MergeSort(arr, lowIndex, midIndex);
MergeSort(arr, midIndex + 1, highIndex);
//归并
Merge(arr, lowIndex, midIndex, highIndex); } return arr; }
//归并排序的核心部分:将两个有序的左右子表(以midIndex区分),合并成一个有序的表
private static int[] Merge(int[]arr,int lowIndex,int midIndex,int highIndex)
{
//左侧A子表 lowIndex....midIndex 右侧B子表 midIndex+1....highIndex
int[] tempArr = new int[arr.Length];
int tempIndex = 0;
int indexA = lowIndex, indexB = midIndex + 1;
//左右表同时遍历比较 ,如果其中有一个子表遍历完,则跳出循环
while (indexA<=midIndex && indexB <=highIndex)
{
tempArr[tempIndex++] = (arr[indexA] <= arr[indexB] ? arr[indexA++] : arr[indexB++]); }
//左表遍历完,右表还有数据,将右表剩余数,放入tempArr中
while(indexB<=highIndex)
{
tempArr[tempIndex++] = arr[indexB++];
}
//右表遍历完,左表还有数据,将左表剩余数,放入tempArr中
while (indexA <= midIndex)
{
tempArr[tempIndex++] = arr[indexA++];
} //将暂存数组中有序的数列写入目标数组的制定位置,使进行归并的数组段有序
tempIndex = 0;
for (int i = lowIndex; i <=highIndex ; i++)
{
arr[i] = tempArr[tempIndex++];
}
return arr;
}
运行结果
Console.WriteLine($"数据算法");
var arr1 = GetArrayData(20, 1,22);
Console.WriteLine($"生成未排序数据arr1:{ShowArray(arr1)}");
var arr7 = MergeSort(arr1,0,arr1.Length-1);
Console.WriteLine($"归并排序arr7:{ShowArray(arr7)}");

C# 排序算法5:归并排序的更多相关文章
- Java常见排序算法之归并排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- 【排序算法】归并排序算法 Java实现
归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用. 基本思想 可以将一组数组分成A,B两组 依次类推,当分出来的小组只有一 ...
- 【DS】排序算法之归并排序(Merge Sort)
一.算法思想 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法的一个非常典型的应用,指的是将两个已经排序的序列合并成一个序列的操作.其归并思想如下: 1)申请空间,使其大小为两个已经 ...
- 排序算法之归并排序(Mergesort)解析
转自:http://www.cnblogs.com/ayqy/p/4050452.html 一.归并排序的优缺点(pros and cons) 耗费心思来理解它,总要有个理由吧: 归并排序的效率达 ...
- 我的Java开发学习之旅------>Java经典排序算法之归并排序
一.归并排序 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序列:即先使每个子序列 ...
- 我的Java开发学习之旅------>Java经典排序算法之归并排序
一.归并排序 归并排序是建立在归并操作上的一种有效的排序算法,该算法是採用分治法(Divide and Conquer)的一个很典型的应用.将已有序的子序列合并,得到全然有序的序列.即先使每一个子序列 ...
- C++编程练习(15)----“排序算法 之 归并排序“
归并排序 归并排序(Merging Sort)的原理: 假设初始序列含有 n 个记录,则可以看成是 n 个有序的子序列,每个子序列的长度为1,然后两两归并,得到 [n/2] ([ x ] 表示不小于 ...
- Java排序算法之归并排序
基本思想: 归并排序利用分治法,先将一个序列分成一个个子序列,然后对子序列进行排序,再把有序子序列合并为整体有序序列. 图片来自于http://www.cnblogs.com/shudonghe/p/ ...
- 数据结构与算法之PHP排序算法(归并排序)
一.基本思想 归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,使每个子序列有序,再将已有序的子序列合并,得到完全有序的序列.该算法是采用分治法(Divid ...
- js排序算法04——归并排序
归并排序是一种分治算法.思想是把原数组切分成较小的数组,直到每个小数组只有一个位置,再将小数组归并成较大的数组,直到最后有一个完整有序的大数组. js实现如下: function mergeSort( ...
随机推荐
- 使用 VS 2019 将 c# 生成 DLL 动态链接库文件
主要步骤: ChatGPT 的回答: 你可以尝试使用 Visual Studio 创建一个类库项目,然后将你写的两个类添加到该项目中,并进行编译,最终生成 DLL 文件.具体步骤如下: 打开 Visu ...
- Python+Selenium+Webdriver+unittest 实现登录126邮箱
第一版:登录 #encoding=utf-8 import unittest import time from selenium import webdriver from selenium.webd ...
- hello Flask最简单的Flask项目
# 1.导包 from flask import Flask # 2.实例化Flask对象.一般变量名都叫app,大家都是这样用,很多扩展插件的文档也是叫app,所以统一都叫app. # __name ...
- 聊聊流式数据湖Paimon(三)
概述 如果表没有定义主键,则默认情况下它是仅追加 表类型(Append Only Table). 根据桶(Bucket)的定义,我们有两种不同的仅追加模式:"Append For Scala ...
- mybatis空格字符替换
mybatis空格字符替换 <select id="user" resultType="java.util.Map" parameterType=&quo ...
- C++ 学习宝藏网站分享
C++ 学习宝藏网站分享 1. C++ 在线参考手册 Cppreference https://zh.cppreference.com C++ 开发者必备的在线参考手册,是我最常访问的 C++ 网站之 ...
- 【manim动画教程】--目录(完结)
manim是一个生成数学教学视频的动画引擎. 它用编程的方式创建精美的数学动画,让数学更加易懂. 本教程简单介绍了 manim 的基本使用方式,基于 v0.17.2 版本 manim 安装 manim ...
- flutter常用的设计模式
单例模式(Singleton Pattern): 确保一个类只有一个实例,并提供一个全局访问点. 工厂模式(Factory Pattern): 定义一个创建对象的接口,但让子类决定具体实例化哪个类:常 ...
- flutter屏幕适配方案
使用MediaQuery和比例因子 优点:使用简单,可以处理大多数情况下的屏幕适配需求. 缺点:需要手动计算比例因子,并且随着UI元素变得更加复杂和层次化(例如多层次列表或动画效果),使用此方法可能会 ...
- C++篇:第十章_命名空间_知识点大全
C++篇为本人学C++时所做笔记(特别是疑难杂点),全是硬货,虽然看着枯燥但会让你收益颇丰,可用作学习C++的一大利器 十.命名空间 命名空间可以在全局作用域或其他命名空间内部定义,但不能在函数.结构 ...