Problem Statement

This is an interactive task, where your and the judge's programs interact via Standard Input and Output.

You and the judge will follow the procedure below.
The procedure consists of phases $1$ and $2$; phase $1$ is immediately followed by phase $2$.

(Phase $1$)

  • The judge gives you an integer $N$.
  • You print an integer $M$ between $1$ and $50000$, inclusive.
  • You also print $M$ pairs of integers $(l_1, r_1), (l_2, r_2), \ldots, (l_M, r_M)$ such that $1 \leq l_i \leq r_i \leq N$ for every $i = 1, 2, \ldots, M$ (the $M$ pairs do not have to be distinct).

(Phase $2$)

  • The judge gives you an integer $Q$.
  • You and the judge repeats the following $Q$ times.
    • The judge gives you two integers $L$ and $R$ as a query.
    • You respond with two integers $a$ and $b$ between $1$ and $M$, inclusive (possibly with $a = b$).
      Here, $a$ and $b$ must satisfy the condition below. Otherwise, your submission will be judged incorrect.
      • The union of the set $\lbrace l_a, l_a+1, \ldots, r_a\rbrace$ and the set $\lbrace l_b, l_b+1, \ldots, r_b\rbrace$ equals the set $\lbrace L, L+1, \ldots, R\rbrace$.

After the procedure above, terminate the program immediately to be judged correct.

Constraints

  • $1 \leq N \leq 4000$
  • $1 \leq Q \leq 10^5$
  • $1 \leq L \leq R \leq N$
  • All values in the input are integers.

Input and Output

This is an interactive task, where your and the judge's programs interact via Standard Input and Output.

(Phase $1$)

  • First, $N$ is given from the input.
  • Next, an integer $M$ between $1$ and $50000$, inclusive, should be printed.
  • Then, $(l_1, r_1), (l_2, r_2), \ldots, (l_M, r_M)$ should be printed, one at a time.
    Specifically, for each $i = 1, 2, \ldots, M$, the $i$-th output should be $(l_i, r_i)$ in the following format:
$l_i$ $r_i$

(Phase $2$)

  • First, $Q$ is given from the input.
  • In each query, integers $L$ and $R$ representing the query are given in the following format:
$L$ $R$
  • In response to each query, two integers $a$ and $b$ should be printed in the following format:
$a$ $b$

Cautions

  • At the end of each output, print a newline and flush Standard Output. Otherwise, you may get the TLE verdict.
  • If your program prints a malformed output or quits prematurely, the verdict will be indeterminate. Particularly, note that in case of a runtime error, the verdict may be WA or TLE instead of RE.
  • After phase $2$, immediately terminate the program. Otherwise, the verdict will be indeterminate.
  • $L$ and $R$ given in phase $2$ will be decided according to $(l_1, r_1), (l_2, r_2), \ldots, (l_M, r_M)$ you print in phase $1$.

Sample Interaction

Below is a sample interaction with $N = 4$ and $Q = 4$.

=

Input Output Description
4 $N$ is given.
6 You print $M$.
3 3 You print $(l_1, r_1) = (3, 3)$.
4 4 You print $(l_2, r_2) = (4, 4)$.
1 1 You print $(l_3, r_3) = (1, 1)$.
2 4 You print $(l_4, r_4) = (2, 4)$.
1 3 You print $(l_5, r_5) = (1, 3)$.
2 2 You print $(l_6, r_6) = (2, 2)$.
4 $Q$ is given.
1 3 As the first query, $L = 1$ and $R = 3$ are given.
1 5 You respond with $a = 1$ and $b = 5$.
3 4 As the second query, $L = 3$ and $R = 4$ are given.
2 1 You respond with $a = 2$ and $b = 1$.
2 4 As the third query, $L = 2$ and $R = 4$ are given.
4 4 You respond with $a = 4$ and $b = 4$.
1 1 As the fourth query, $L = 1$ and $R = 1$ are given.
3 3 You respond with $a = 3$ and $b = 3$.

这个构造和ST表的完全一样。把所有长度为 $1,2,4,8\cdots$ 的区间在一开始给出。然后在求区间合并时也想ST表那样,令 $k=\lfloor\log (r-l+1)\rfloor$,输出 $[l,l+2^k-1]$ 和 $[r-2^k+1,r]$ 对应的编号就行了。

#include<cstdio>
const int N=4005;
int n,st[15][N],lg[N],idx,q,l,r,k;
int main()
{
scanf("%d",&n);
for(int i=2;i<=n;i++)
lg[i]=lg[i>>1]+1;
for(int i=0;i<=lg[n];i++)
for(int j=1;j+(1<<i)-1<=n;j++)
st[i][j]=++idx;
printf("%d\n",idx);
for(int i=0;i<=lg[n];i++)
for(int j=1;j+(1<<i)-1<=n;j++)
printf("%d %d\n",j,j+(1<<i)-1);
fflush(stdout);
scanf("%d",&q);
while(q--)
{
scanf("%d%d",&l,&r);
k=lg[r-l+1];
printf("%d %d\n",st[k][l],st[k][r-(1<<k)+1]);
fflush(stdout);
}
}

[ABC282F] Union of Two Sets的更多相关文章

  1. TSQL 分组集(Grouping Sets)

    分组集(Grouping Sets)是多个分组的并集,用于在一个查询中,按照不同的分组列对集合进行聚合运算,等价于对单个分组使用“union all”,计算多个结果集的并集.使用分组集的聚合查询,返回 ...

  2. 转:GROUPING SETS、ROLLUP、CUBE

    转:http://blog.csdn.net/shangboerds/article/details/5193211 大家对GROUP BY应该比较熟悉,如果你感觉自己并不完全理解GROUP BY,那 ...

  3. GROUPING SETS、ROLLUP、CUBE

    大家对GROUP BY应该比较熟悉,如果你感觉自己并不完全理解GROUP BY,那么本文不适合你.还记得当初学习SQL的时候,总是理解不了GROUP BY的作用,经过好长时间才终于明白GROUP BY ...

  4. Group By Grouping Sets

    Group by分组函数的自定义,与group by配合使用可更加灵活的对结果集进行分组,Grouping sets会对各个层级进行汇总,然后将各个层级的汇总值union all在一起,但却比单纯的g ...

  5. PHP Redis 全部操作方法

    Classes and methods Usage Class Redis Class RedisException Predefined constants Class Redis Descript ...

  6. [转]LUA元表

    lua元表和元方法 <lua程序设计> 13章 读书笔记 lua中每个值都有一个元表,talble和userdata可以有各自独立的元表,而其它类型的值则共享其类型所属的单一元表.lua在 ...

  7. 使用guava带来的方便

    ​    ​guava是在原先google-collection 的基础上发展过来的,是一个比较优秀的外部开源包,最近项目中使用的比较多,列举一些点.刚刚接触就被guava吸引了... ​    ​这 ...

  8. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

  9. java 泛型深入之Set有用工具 各种集合泛型深入使用演示样例,匿名内部类、内部类应用于泛型探讨

    java 泛型深入之Set有用工具 各种集合泛型深入使用演示样例,匿名内部类.内部类应用于泛型探讨 //Sets.java package org.rui.generics.set; import j ...

  10. redis 有序集合(zset)函数

    redis 有序集合(zset)函数 zAdd 命令/方法/函数 Adds the specified member with a given score to the sorted set stor ...

随机推荐

  1. 【pandas小技巧】--统计值作为新列

    这次介绍的小技巧不是统计,而是把统计结果作为新列和原来的数据放在一起.pandas的各种统计功能之前已经介绍了不少,但是每次都是统计结果归统计结果,原始数据归原始数据,没有把它们合并在一个数据集中来观 ...

  2. MIT6.s081/6.828 lectrue5/6:System call entry/exit 以及 Lab4 心得

    这篇博客主要复习 lecture05:GDB calling conentions 和 lecture06:System call entry/exit 的内容,外加 Lab4:traps 的心得 前 ...

  3. 《Python魔法大冒险》003 两个神奇的魔法工具

    魔法师:小鱼,要开始编写魔法般的Python程序,我们首先需要两个神奇的工具:Python解释器和代码编辑器. 小鱼:这两个工具是做什么的? 魔法师:你可以把Python解释器看作是一个魔法棒,只要你 ...

  4. 云上的甜蜜早安:腾讯云云函数助力PHP打造女友专属每日推送

    用腾讯云的云函数做一个微信公众号早安,每天定时发送早安给你的女朋友! 1.首先我们登录腾讯云,在搜索栏搜索云函数,或直接用这个链接进入curl.qcloud.com/Td0IkpmD 2.进入云函数, ...

  5. vivo数据中心网络链路质量监测的探索实践

    作者:vivo 互联网服务器团队- Wang Shimin 网络质量监测中心是一个用于数据中心网络延迟测量和分析的大型系统.通过部署在服务器上的Agent发起5次ICMP Ping以获取端到端之间的网 ...

  6. JVM面试题、关键原理、JMM

    boolean:占用1个字节,取值为true或false. byte:占用1个字节,范围为-128到127. short:占用2个字节,范围为-32,768到32,767. int:占用4个字节,范围 ...

  7. 千呼万唤始出来 JDK 21 LTS, 久等了

    平地起惊雷!!! 目录 英雄的迟暮 大人时代变了 JDK 21 LTS 前 JAVA并发编程模型 JDK 21 LTS 中的 JAVA 并发编程模型 虚拟线程 VS 线程池 The Last 你可以称 ...

  8. linux常用命令(七)

    用于系统内信息交流的相关命令 echo mesg wall write echo:在显示器上显示文字 命令语法:echo[选项] [字符串] 选项 选项含义 -n 表示输出文字后不换行 例子:将文本& ...

  9. 【matplotlib 实战】--南丁格尔玫瑰图

    南丁格尔玫瑰图是一种用极坐标下的柱状图或堆叠柱状图来展示数据的图表. 虽然南丁格尔玫瑰图外观类似饼图,但是表示数据的方式不同,它是以半径来表示数值的,而饼图是以扇形的弧度来表达数据的. 所以,南丁格尔 ...

  10. 记一次MySQL5初始化被kill的问题排查

    写在前面 由于测试环境JED申请比较繁琐,所以Eone提供了单机版Mysql供用户使用,近期Eone搭建Mysql5的时候发现莫名被kill了,容器规格是4C8G,磁盘30G 这不科学,之前都是可以的 ...