bzoj3110
3110: [Zjoi2013]K大数查询
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 5881 Solved: 1958
[Submit][Status][Discuss]
Description
有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c
如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。
Input
第一行N,M
接下来M行,每行形如1 a b c或2 a b c
Output
输出每个询问的结果
Sample Input
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3
Sample Output
2
1
HINT
【样例说明】
第一个操作 后位置 1 的数只有 1 , 位置 2 的数也只有 1 。 第二个操作 后位置 1
的数有 1 、 2 ,位置 2 的数也有 1 、 2 。 第三次询问 位置 1 到位置 1 第 2 大的数 是
1 。 第四次询问 位置 1 到位置 1 第 1 大的数是 2 。 第五次询问 位置 1 到位置 2 第 3
大的数是 1 。
N,M<=50000,N,M<=50000
a<=b<=N
1操作中abs(c)<=N
2操作中c<=Maxlongint
整体二分是什么东西? 我们知道 主席树查询是一个类似二分的过程,但是这道题有修改,一次一次修改太慢了,这时就用上二分的思想了。
一个一个二分太慢了,那么我们把一堆东西一起二分,也就是把他们不断地划分,归类。
二分一个lb和ub,比(lb+ub)/2大的归到右边,小的归到左边,然后就完了。
#include<cstdio>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 500010
typedef long long ll;
struct data
{
ll v;
ll l,r,type,pos;
}op[N];
vector<data> lp,rp;
ll n,m;
ll tag[N*],t[N*],ans[N];
bool flag[N*];
void update(int l,int r,int x,int a,int b,int num)
{
if(l>b||r<a) return;
if(l>=a&&r<=b)
{
tag[x]+=num;
return;
}
t[x]+=(min(r,b)-max(l,a)+)*num;
update(l,(l+r)/,x*,a,b,num);
update((l+r)/+,r,x*+,a,b,num);
}
ll query(int l,int r,int x,int a,int b)
{
if(l>b||r<a) return ;
if(l>=a&&r<=b) return t[x]+(r-l+)*tag[x];
ll ret=;
ret+=(min(r,b)-max(l,a)+)*tag[x];
ret+=query(l,(l+r)/,x*,a,b);
ret+=query((l+r)/+,r,x*+,a,b);
return ret;
}
void solve(int l,int r,int lb,int ub)
{
// printf("((((((((((((((((((((((\n");
// printf("lb=%d ub=%d\n",lb,ub);
// printf("left=%d right=%d\n",l,r);
if (l > r) return ;
if(lb==ub)
{
for(int i=l;i<=r;i++)
if(op[i].type==)
{
flag[op[i].pos]=true;
ans[op[i].pos]=lb;
}
return;
}
ll mb=lb+(ub-lb)/;
lp.clear(); rp.clear();
for(int i=l;i<=r;i++)
{
if(op[i].type==)
{
if(op[i].v>mb)
{
// printf("------------\n");
// printf("l=%d r=%d\n",op[i].l,op[i].r);
update(,n,,op[i].l,op[i].r,);
// printf("------------\n");
rp.push_back(op[i]);
}
else
lp.push_back(op[i]);
}
else
{
ll c=query(,n,,op[i].l,op[i].r);
// printf("op[i].l=%d op[i].r=%d\n",op[i].l,op[i].r);
// printf("c=%d\n",c);
if(c>=op[i].v)
{
rp.push_back(op[i]);
}
else
{
op[i].v-=c;
lp.push_back(op[i]);
}
}
} for(int i=l;i<=r;i++)
{
if(op[i].type==&&op[i].v>mb)
update(,n,,op[i].l,op[i].r,-);
} ll mid=l+lp.size();
for(int i=;i<lp.size();i++)
{
op[i+l]=lp[i];
}
for(int i=;i<rp.size();i++)
{
op[mid+i]=rp[i];
}
// printf(")))))))))))))))))))))\n");
solve(l,mid-,lb,mb);
solve(mid,r,mb+,ub);
}
int main()
{
scanf("%lld%lld",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%lld%lld%lld%lld",&op[i].type,&op[i].l,&op[i].r,&op[i].v);
op[i].pos=i;
}
solve(,m,-n,n);
for(int i=;i<=m;i++)
{
if(flag[i]) printf("%lld\n",ans[i]);
}
return ;
}
bzoj3110的更多相关文章
- 【bzoj3110】 Zjoi2013—K大数查询
http://www.lydsy.com/JudgeOnline/problem.php?id=3110 (题目链接) 题意 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在 ...
- 【BZOJ3110】K大数查询(整体二分)
[BZOJ3110]K大数查询(整体二分) 题面 BZOJ 题解 看了很久整体二分 一直不知道哪里写错了 ... 又把树状数组当成线段树区间加法来用了.. 整体二分还是要想清楚在干什么: 我们考虑第\ ...
- BZOJ3110 [Zjoi2013]K大数查询 树套树 线段树 整体二分 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3110 题意概括 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位 ...
- 【BZOJ3110】【LG3332】[ZJOI2013]K大数查询
[BZOJ3110][LG3332][ZJOI2013]K大数查询 题面 洛谷 BZOJ 题解 和普通的整体分治差不多 用线段树维护一下每个查询区间内大于每次二分的值\(mid\)的值即可 然后再按套 ...
- 【BZOJ3110】[Zjoi2013]K大数查询 树套树
[BZOJ3110][Zjoi2013]K大数查询 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c,如果 ...
- 【BZOJ3110】K大数查询(权值线段树套线段树+标记永久化,整体二分)
题意:有N个位置,M个操作.操作有两种,每次操作 如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...
- 【BZOJ3110】[ZJOI2013]K大数查询(整体二分)
题目: BZOJ3110 分析: 整体二分模板题-- 先明确一下题意:每个位置可以存放多个数,第一种操作是"加入 (insert) "一个数而不是"加上 (add) &q ...
- bzoj3110树套树
wa一片,最后一个T,终于心碎了... 为什么没人告诉我要开longlong 为什么所有人都说没有负数 #include<cstdio> #include<algorithm> ...
- BZOJ3110: [Zjoi2013]K大数查询
喜闻乐见的简单树套树= =第一维按权值建树状数组,第二维按下标建动态开点线段树,修改相当于第二维区间加,查询在树状数组上二分,比一般的线段树还短= =可惜并不能跑过整体二分= =另外bzoj上的数据有 ...
随机推荐
- 【转】Xcode进阶快捷键
Xcode 快捷键和手势不仅节省了宝贵的工作时间,而且能让你在工作过程中感到更自信.能力变得更强,这样的工作方式也更合理.学习下列技巧你将成为 Xcode 资深用户. 此处提供一些通用的按键符以供参考 ...
- iOS之UICollectionView详解
UICollectionView是一种类似于UITableView但又比UITableView功能更强大.更灵活的视图,这是源于它将UICollectionView对cell的布局交给了UIColle ...
- 【原】iOS:手把手教你发布代码到CocoaPods(Trunk方式)
Change Log: 2015.08.20 - 添加podspec文件更新方法 2015.08.19 - 首次发布 概述 关于CocoaPods的介绍不在本文的主题范围内,如果你是iOS开发者却不知 ...
- 会话技术( Cookie ,Session)
会话技术: 会话:浏览器访问服务器端,发送多次请求,接受多次响应.直到有一方断开连接.会话结束. 解决问题:可以使用会话技术,在一次会话的多次请求之间共享数据. ...
- VS的安装
一 安装过程 我直接在官网下载的 2015版本 ,软件比较大 安装起来比较花时间 同时也装了中文语言包,下面附上安装过程中的一些截图. 二 现在正在摸索如何使用,百度教程,等会附上单元测试.
- Java导入的项目乱码怎么解决?(Ⅱ)
1.首先 打开 >> Eclipse或Myeclipse.(我用的是Myeclipse) 2.打开 >> Window >> Preferences ...
- ORA-01336: specified dictionary file cannot be opened
这篇介绍使用Logminer时遇到ORA-01336: specified dictionary file cannot be opened错误的各种场景 1:dictionary_location参 ...
- Oracle表的几种连接方式
1,排序 - - 合并连接(Sort Merge Join, SMJ) 2,嵌套循环(Nested Loops, NL) 3,哈希连接(Hash Join, HJ) Join是一种试图将两个表结合在一 ...
- 监控mysql各种选项
安装mysql之后,需要对mysql服务进行监控. nagios开源自带的check_mysql 对 mysql 的slave 机监控倒是不错.但是对数据库主机监控就略显不足了. 使用一个监控 ...
- python数据库操作对主机批量管理
import paramiko import MySQLdb conn = MySQLdb.connect(host=',db='host') cur = conn.cursor(cursorclas ...