题目链接

题目

题目描述

Farmer John is decorating his Spring Equinox Tree (like a Christmas tree but popular about three months later). It can be modeled as a rooted mathematical tree with N (1 <= N <= 100,000) elements, labeled 1...N, with element 1 as the root of the tree. Each tree element e > 1 has a parent, PeP_ePe (1 <= \(P_e\) <= N). Element 1 has no parent (denoted '-1' in the input), of course, because it is the root of the tree.

Each element i has a corresponding subtree (potentially of size 1) rooted there. FJ would like to make sure that the subtree corresponding to element i has a total of at least \(C_i\) (0 <= \(C_i\) <= 10,000,000) ornaments scattered among its members. He would also like to minimize the total amount of time it takes him to place all the ornaments (it takes time K*\(T_i\) to place K ornaments at element i (1 <= \(T_i\)​ <= 100)).

Help FJ determine the minimum amount of time it takes to place ornaments that satisfy the constraints. Note that this answer might not fit into a 32-bit integer, but it will fit into a signed 64-bit integer.

For example, consider the tree below where nodes located higher on
the display are parents of connected lower nodes (1 is the root): 1
|
2
|
5
/ \
4 3 Suppose that FJ has the following subtree constraints: Minimum ornaments the subtree requires
| Time to install an ornament
Subtree | |
root | C_i | T_i
--------+--------+-------
1 | 9 | 3
2 | 2 | 2
3 | 3 | 2
4 | 1 | 4
5 | 3 | 3 Then FJ can place all the ornaments as shown below, for a total
cost of 20: 1 [0/9(0)] legend: element# [ornaments here/ | total ornaments in subtree(node install time)]
2 [3/9(6)]
|
5 [0/6(0)]
/ \
[1/1(4)] 4 3 [5/5(10)]

输入描述

  • Line 1: A single integer: N
  • Lines 2..N+1: Line i+1 contains three space-separated integers: PiP_iPi, CiC_iCi, and TiT_iTi

输出描述

  • Line 1: A single integer: The minimum time to place all the ornaments

示例1

输入

5
-1 9 3
1 2 2
5 3 2
5 1 4
2 3 3

输出

20

题解

知识点:贪心,DFS,树形dp。

每个节点为根的子树都有一个最小要求的装饰数量,显然叶子节点只能全挂上去,随后向上考虑。对于一个子树,肯定把装饰挂在花费最小的节点上,因此可以回溯同时更新子树最小值,同时还需要一个记录已经挂了多少的数组。

注意结果可能超 int

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; struct edge {
int to, nxt;
}e[100007];
int h[100007], cnt;
int root, c[100007], t[100007];///某节点的需求装饰;某子树所有节点的最小t;
ll ans, csum[100007]; ///某子树已有装饰 void add(int u, int v) {
e[cnt].to = v;
e[cnt].nxt = h[u];
h[u] = cnt++;
} void dfs(int u) {
if (!~h[u]) {
ans += c[u] * t[u];
csum[u] = c[u];
return;
}
for (int i = h[u];~i;i = e[i].nxt) {
int v = e[i].to;
dfs(v);
csum[u] += csum[v];
t[u] = min(t[u], t[v]);
}
ans += max(c[u] - csum[u], 0LL) * t[u];
csum[u] = max(csum[u], 0LL + c[u]);
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
memset(h, -1, sizeof(h));
int n;
cin >> n;
for (int i = 1;i <= n;i++) {
int p;
cin >> p >> c[i] >> t[i];
if (p == -1) root = i;
else add(p, i);
}
dfs(root);
cout << ans << '\n';
return 0;
}

NC24623 Tree Decoration的更多相关文章

  1. 洛谷——P3018 [USACO11MAR]树装饰Tree Decoration

    P3018 [USACO11MAR]树装饰Tree Decoration 比较水的一道树上模拟水题,更新每个点的价值为以这个点为根的子树中的价值最小值,同时更新以每个节点为根的$sum$值,即以这个节 ...

  2. 洛谷P3018 [USACO11MAR]树装饰Tree Decoration

    洛谷P3018 [USACO11MAR]树装饰Tree Decoration树形DP 因为要求最小,我们就贪心地用每个子树中的最小cost来支付就行了 #include <bits/stdc++ ...

  3. bzoj usaco 金组水题题解(2.5)

    bzoj 2197: [Usaco2011 Mar]Tree Decoration 树形dp..f[i]表示处理完以i为根的子树的最小时间. 因为一个点上可以挂无数个,所以在点i上挂东西的单位花费就是 ...

  4. BZOJ-USACO被虐记

    bzoj上的usaco题目还是很好的(我被虐的很惨. 有必要总结整理一下. 1592: [Usaco2008 Feb]Making the Grade 路面修整 一开始没有想到离散化.然后离散化之后就 ...

  5. bzoj Usaco补完计划(优先级 Gold>Silver>资格赛)

    听说KPM初二暑假就补完了啊%%% 先刷Gold再刷Silver(因为目测没那么多时间刷Silver,方便以后TJ2333(雾 按AC数降序刷 ---------------------------- ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. 2015暑假多校联合---Mahjong tree(树上DP 、深搜)

    题目链接 http://acm.split.hdu.edu.cn/showproblem.php?pid=5379 Problem Description Little sun is an artis ...

  8. DP---Mahjong tree

    HDU  5379 Problem Description Little sun is an artist. Today he is playing mahjong alone. He suddenl ...

  9. HDU 5379 Mahjong tree(dfs)

    题目链接:pid=5379">http://acm.hdu.edu.cn/showproblem.php? pid=5379 Problem Description Little su ...

  10. HDU 5379——Mahjong tree——————【搜索】

    Mahjong tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

随机推荐

  1. 【日常踩坑】解决 kex_exchange_identification 报错

    目录 踩坑 原因分析 解决办法 1. 临时关闭代理 2. 修改代理软件配置,22 端口走直连 3. 改用 HTTPS 协议,走 443 端口 参考资料 踩坑 最近在使用 git 时,发现 git pu ...

  2. GraduationProject

    GraduationProject 为了毕设寻找的一些springboot项目资源 后台项目: FEBS-Shiro: https://github.com/wuyouzhuguli/FEBS-Shi ...

  3. [转帖]Linux中的lstopo命令(详细指南)

    https://juejin.cn/post/7117544110856077343 目录: 简介 语法 命令 总结 参考文献 介绍 lstopo命令是用来显示系统的拓扑结构的.它提供了关于NUMA内 ...

  4. 查看 Oracle 数据库内 没有Primary key 类型主键的表信息

    查看 Oracle 数据库内 没有Primary key 类型主键的表信息 SELECT * FROM user_tables A WHERE NOT EXISTS ( SELECT * FROM u ...

  5. Linux查找当前目录下包含部分内容的文件,并且copy到指定路径的简单方法

    1 获取文件列表 find . -name "*.data" |xargs grep -i 'yearvariable' | uniq | awk '{print $1}' |cu ...

  6. PHP GC回收机制详解

    前言 GC的全称是Garbage Collection也就是垃圾回收的意思,在PHP中,是使用引用计数和回收周期来自动管理内存对象的,当一个对象被设置为NULL,或者没有任何指针指向时,他就会变成垃圾 ...

  7. R2M分布式锁原理及实践

    作者:京东科技 张石磊 1 案例引入 名词简介: 资源:可以理解为一条内容,或者图+文字+链接的载体. 档位ID: 资源的分类组,资源必须归属于档位. 问题描述:当同一个档位下2条资源同时审批通过时, ...

  8. 手写Promise自定义封装 then 函数

    Promise 自定义封装 then 函数 <script src="./Promise.js"></script> <script type=&qu ...

  9. vue结合elementUI折叠展开效果动画

    组件 <template> <div class="hide-page-com"> <ul class="tab-tilte"&g ...

  10. 【JS 逆向百例】猿人学系列 web 比赛第五题:js 混淆 - 乱码增强,详细剖析

    逆向目标 猿人学 - 反混淆刷题平台 Web 第五题:js 混淆,乱码增强 目标:抓取全部 5 页直播间热度,计算前 5 名直播间热度的加和 主页:https://match.yuanrenxue.c ...