[BZOJ 2242] [SDOI 2011] 计算器
Description
你被要求设计一个计算器完成以下三项任务:
- 给定 \(y,z,p\),计算 \(y^z \bmod p\) 的值;
- 给定 \(y,z,p\),计算满足 \(xy≡ z \pmod p\) 的最小非负整数;
- 给定 \(y,z,p\),计算满足 \(y^x ≡ z \pmod p\) 的最小非负整数。
Input
输入包含多组数据。
第一行包含两个正整数 \(T,K\),分别表示数据组数和询问类型(对于一个测试点内的所有数据,询问类型相同)。
以下行每行包含三个正整数 \(y,z,p\),描述一个询问。
Output
对于每个询问,输出一行答案。
对于询问类型 \(2\) 和 \(3\),如果不存在满足条件的,则输出“Orz, I cannot find x!”,注意逗号与“I”之间有一个空格。
Sample Input
3 1
2 1 3
2 2 3
2 3 3
3 2
2 1 3
2 2 3
2 3 3
Sample Output
2
1
2
2
1
0
HINT
\(1\le y,z,p\le 10^9\),\(p\)为质数,\(1\le T\le10\)
Solution
询问 \(2\)
\Downarrow\\
ax-kp=b
\]
该方程有解的充要条件为 \(\gcd(a,p)\mid b\),答案为 \(b\times a^{-1}\bmod p\)。
询问 \(3\)
给定 \(a,b,p\),求最小的非负整数 \(x\),满足
\]
根据费马小定理可知
\]
因此 \(x\) 从 \(0\) 枚举到 \(p-2\) 即可。
设 \(m={\left\lceil\sqrt p\right\rceil},x=i\times m-j\),有
\]
移项得
\]
首先从 \(0\dots m\) 枚举 \(j\),将得到的 \(a^jb\) 的值存入 \(hash\) 表中,然后从 \(1\dots m\) 枚举 \(i\),若表中存在 \((a^m)^i\),则当前 \(i\times m-j\) 即为答案。
Code
#include <cmath>
#include <cstdio>
#include <tr1/unordered_map>
std::tr1::unordered_map<int,int> hash;
int read() {
int x = 0; char c = getchar();
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
return x;
}
int gcd(int a, int b) {
return b ? gcd(b, a % b) : a;
}
int fastpow(int a, int b, int p) {
int res = 1;
for (; b; b >>= 1, a = 1LL * a * a % p)
if (b & 1) res = 1LL * res * a % p;
return res;
}
void bsgs(int a, int b, int p) {
if (a % p == 0) { puts("Orz, I cannot find x!"); return; }
int m = ceil(sqrt(p)), t = 1;
hash.clear(), hash[b % p] = 0;
for (int i = 1; i <= m; ++i)
t = 1LL * t * a % p, hash[1LL * t * b % p] = i;
a = t;
for (int i = 1; i <= m; ++i, t = 1LL * t * a % p)
if (hash.count(t)) { printf("%d\n", i * m - hash[t]); return; }
puts("Orz, I cannot find x!");
}
int main() {
int T = read(), K = read();
while (T--) {
int a = read(), b = read(), p = read();
if (K == 1) printf("%d\n", fastpow(a, b, p));
else if (K == 2) {
if (b % gcd(a, p)) puts("Orz, I cannot find x!");
else printf("%lld\n", 1LL * b * fastpow(a, p - 2, p) % p);
} else bsgs(a, b, p);
}
return 0;
}
[BZOJ 2242] [SDOI 2011] 计算器的更多相关文章
- 【BZOJ 2242】[SDOI2011]计算器
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
- [BZOJ 2243] [SDOI 2011] 染色 【树链剖分】
题目链接:BZOJ - 2243 题目分析 树链剖分...写了200+行...Debug了整整一天+... 静态读代码读了 5 遍 ,没发现错误,自己做小数据也过了. 提交之后全 WA . ————— ...
- [SDOI 2011]计算器
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
- BZOJ 2243 SDOI 2011染色
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2243 算法讨论: 树链剖分把树放到线段树上.然后线段树的每个节点要维护的东西有左端点的颜色 ...
- [BZOJ 2285] [SDOI 2011] 保密
Description 传送门 Solution 这道题的最大难点在于读懂题意(雾 分数规划求出 \(n\) 到 \(1\cdots n_1\) 每个点的最小 \(\sum\frac{t_i}{s_i ...
- BZOJ 2245 SDOI 2011 工作安排 费用流
题目大意:有一些商品须要被制造.有一些员工.每个员工会做一些物品,然而这些员工做物品越多,他们的愤慨值越大,这满足一个分段函数.给出哪些员工能够做哪些东西,给出这些分段函数,求最小的愤慨值以满足须要被 ...
- [BZOJ 1879][SDOI 2009]Bill的挑战 题解(状压DP)
[BZOJ 1879][SDOI 2009]Bill的挑战 Description Solution 1.考虑状压的方式. 方案1:如果我们把每一个字符串压起来,用一个布尔数组表示与每一个字母的匹配关 ...
- [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)
[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...
- [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)
[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...
随机推荐
- 微耕N3000注入
使用ILSpy或Reflector 反编译N3000并导出解决方案,便于搜索方法代码 使用ILDASM生成中间代码D:\app\WG\AccessControl\IL\N3000.il 操作如下:(可 ...
- 开源项目商业分析实例(1) - MonicaHQ
本来写一篇开源商业模式的稿子,因为有四大主题,这个稿子有点大,导致现在半个月过去了,都还没有憋出来. 今天想想还是采用MVP(minimum viable product,最小化可行产品)模式吧. ...
- javaweb登陆过滤器实现
在web.xml中配置登陆过滤器: <!-- 配置登陆过滤器 --> <filter> <filter-name>loginFilter</filter-na ...
- iOS----------随机色
#define KColorRandomColor [UIColor colorWithRed:arc4random()%255/255.0 green:arc4random()%255/255.0 ...
- Android为TV端助力 播放视频卡顿问题
问题分析: 1.连接服务器,ping IP 看看有没有丢包 2.写一个只有mediaplayer的Demo,放到同款的盒子或者电视,保证网咯也是一样的情况下,看看Demo卡不卡 如果一直不卡,那有可能 ...
- Android PAI (PlayAutoInstall)预装APK 功能
最近刚找到工作,是手机方案公司,刚接触手机系统预装的APP,以及解决方案MTK平台下预装APP的bug,也接触到了Launcher的东西. 然后接触到了第一个需求 PAI预装APK功能 下面是我用到的 ...
- MongoDB 在系统数据库local上无法创建用户的解决方法
我们知道,MongoDB的Oplog (operations log)记录了用户的最近一段时间的操作(时间长短主要受设置的oplogSize和程序的写入更新量的影响).那么,如果其他部门(例如BI团队 ...
- MySQL中Identifier Case Sensitivity
在MySQL当中,有可能遇到表名大小写敏感的问题.其实这个跟平台(操作系统)有关,也跟系统变量lower_case_table_names有关系.下面总结一下,有兴趣可以查看官方文档"Ide ...
- python3 set(集合)
add(增加元素) name = set(['Tom','Lucy','Ben']) name.add('Juny') print(name) #输出:{'Lucy', 'Juny', 'Ben', ...
- 删除网络中的本地连接*x等
1.运行-regedit 打开注册表 定位到 HKEY_LOCAL_MACHINE SYSTEM CurrentControlSet Control Network {4D36E972-E325-11 ...