BZOJ3784树上的路径
题目描述
给定一个N个结点的树,结点用正整数1..N编号。每条边有一个正整数权值。用d(a,b)表示从结点a到结点b路边上经过边的权值。其中要求a<b.将这n*(n-1)/2个距离从大到小排序,输出前M个距离值。
题解
把每次点分治时的dfs序写下来,假设我们在一个位置找能够和它拼成一条链的另一个位置,可以发现那些位置的顺序在dfs序上构成了一段连续区间,用ST表+堆维护。
注意在进队列之前先内啥一下。
代码
#include<iostream>
#include<cstdio>
#include<queue>
#include<cmath>
#define N 50002
#define M 16
using namespace std;
int tot,head[N],lo[N*M],st[M][N*M],size[N],dp[N],sum,now,deep[N],root,n,p[M][N*M];
bool vis[N];
int start,ed;
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct edge{int n,to,l;}e[N<<];
inline void add(int u,int v,int l){e[++tot].n=head[u];e[tot].to=v;head[u]=tot;e[tot].l=l;}
struct node{
int now,l,r,sum;
node(int nownum=,int num1=,int num2=){
now=nownum;l=num1;r=num2;
int loo=lo[r-l+];
sum=now+max(st[loo][l],st[loo][r-(<<loo)+]);
}
int calc(){
int loo=lo[r-l+];
if(st[loo][l]>=st[loo][r-(<<loo)+])return p[loo][l];else return p[loo][r-(<<loo)+];
}
bool operator <(const node &b)const{return sum<b.sum;}
}pa[N*M];
priority_queue<node>q;
void getroot(int u,int fa){
size[u]=;dp[u]=;
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa&&!vis[e[i].to]){
int v=e[i].to;
getroot(v,u);
size[u]+=size[v];dp[u]=max(dp[u],size[v]);
}
dp[u]=max(dp[u],sum-size[u]);
if(dp[u]<dp[root])root=u;
}
void getsize(int u,int fa){
size[u]=;
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa&&!vis[e[i].to]){
int v=e[i].to;
getsize(v,u);
size[u]+=size[v];
}
}
void getdeep(int u,int fa){
st[][++now]=deep[u];p[][now]=now;
pa[now]=node(deep[u],start,ed);
for(int i=head[u];i;i=e[i].n)if(!vis[e[i].to]&&e[i].to!=fa){
int v=e[i].to;
deep[v]=deep[u]+e[i].l;
getdeep(v,u);
}
}
inline void calc(int u){
st[][++now]=;p[][now]=now;
pa[now]=node{,now,now};
start=now;ed=now;
for(int i=head[u];i;i=e[i].n)if(!vis[e[i].to]){
int v=e[i].to;
deep[v]=e[i].l;
getdeep(v,u);
ed=now;
}
}
void solve(int u){
calc(u);vis[u]=;
for(int i=head[u];i;i=e[i].n)if(!vis[e[i].to]){
int v=e[i].to;
root=n+;sum=size[v];
getroot(v,u);getsize(root,);
solve(root);
}
}
int main(){
n=rd();int k=rd();int u,v,w;
for(int i=;i<n;++i){
u=rd();v=rd();w=rd();
add(u,v,w);add(v,u,w);
}
dp[root=n+]=n+;sum=n;
getroot(,);getsize(root,);
solve(root);
for(int i=;(<<i)<=now&&i<M;++i)
for(int j=;j+(<<i)-<=now;++j)
st[i][j]=max(st[i-][j],st[i-][j+(<<i-)]),p[i][j]=st[i-][j]>=st[i-][j+(<<i-)]?p[i-][j]:p[i-][j+(<<i-)];
for(int i=;i<=now;++i)lo[i]=lo[i>>]+;
for(int i=;i<=now;++i)pa[i]=node(pa[i].now,pa[i].l,pa[i].r),q.push(pa[i]);///care !!!!
for(int i=;i<=k;++i){
node x=q.top();q.pop();
printf("%d\n",x.sum);
int mid=x.calc();
if(x.l<mid)q.push(node(x.now,x.l,mid-));
if(x.r>mid)q.push(node(x.now,mid+,x.r));
}
return ;
}
BZOJ3784树上的路径的更多相关文章
- BZOJ3784 : 树上的路径
树的点分治,在分治的时候将所有点到根的距离依次放入一个数组q中. 对于一棵子树里的点,合法的路径一定是q[L]..q[R]的某个数加上自己到重心的距离. 定义五元组(v,l,m,r,w),表示当前路径 ...
- 2019.01.20 bzoj3784: 树上的路径(二分答案+点分治)
传送门 点分治好题. 题意简述:给一棵带边权的树,问所有路径中前mmm大的.m≤300000m\le300000m≤300000 思路: 网上有题解写了可以通过什么点分治序转化成超级钢琴那道题的做法蒟 ...
- 【BZOJ3784】树上的路径 点分治序+ST表
[BZOJ3784]树上的路径 Description 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a< ...
- 【BZOJ-3784】树上的路径 点分治 + ST + 堆
3784: 树上的路径 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 462 Solved: 153[Submit][Status][Discuss ...
- codevs 2756树上的路径
题意: 2756 树上的路径 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给出一棵树,求出最小的k,使得,且在树 ...
- bzoj 3784: 树上的路径 堆维护第k大
3784: 树上的路径 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 88 Solved: 27[Submit][Status][Discuss] ...
- 树上的路径 BZOJ 3784
树上的路径 [问题描述] 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a<b.将这n*(n-1)/2个距 ...
- Codevs 2756 树上的路径
2756 树上的路径 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给出一棵树,求出最小的k,使得,且在树中存在 ...
- BZOJ3784:树上的路径
浅谈树分治:https://www.cnblogs.com/AKMer/p/10014803.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem. ...
随机推荐
- 设计模式系列之策略模式(Strategy Pattern)
意图:定义一系列的算法,把它们一个个封装起来, 并且使它们可相互替换. 主要解决:在有多种算法相似的情况下,使用 if...else 所带来的复杂和难以维护. 何时使用:一个系统有许多许多类,而区分它 ...
- 扩展1000!(n!)的尾数零的个数
#include <stdio.h> #include <malloc.h> //计算1000!尾数零的个数 //扩展n!的尾数零的个数 //2^a * 5^b //obvio ...
- 导致spring事务配置不起作用的一种原因
@Component public class AnalyticsApplication { @Autowired private InitializationActionService initia ...
- ServiceStack.Redis连接阿里云redis服务时使用连接池出现的问题
创建连接池 private static PooledRedisClientManager prcm = CreateManager(new string[] { "password@ip: ...
- 连接到github
1,创建秘钥 $ ssh-keygen -t rsa -C "youremail@example.com"执行成功后,会在~/.ssh/目录下生成id_rsa和id_rsa.pub ...
- 建立第一个SpringBoot小列子(碰到的错误)
当加入@SpringBootApplication注解时,无法得到解析 错误提示:SpringBootApplication cannot be resolved to a type 错误原因是因为s ...
- git 命令添加整个文件夹以及文件夹下的内容
对于一个文件夹提交到服务器上,喜欢用 git add .(后面为".") 这种情况对于一个文件夹的还是很有用的,但出现了多个不同文件夹后,要分别提交就不能这么用了, 可以使用如下指 ...
- JavaScript -- JSON.parse 函数 和 JSON.stringify 函数
JavaScript -- JSON.parse 函数 和 JSON.stringify 函数 1. JSON.parse 函数: 使用 JSON.parse 可将 JSON 字符串转换成对象. &l ...
- 使用docker swarm集群心得
本片关于使用docker swarm 集群心得,也是一些经验吧!过程描述可能简单! 根据一些公司使用经历接收一下问题并针对问题作出应对策略 1.docker swarm集群 主节点数必须是单数,也就是 ...
- ThreadLocal的使用及原理分析
文章简介 ThreadLocal应该都比较熟悉,这篇文章会基于ThreadLocal的应用以及实现原理做一个全面的分析 内容导航 什么是ThreadLocal ThreadLocal的使用 分析Thr ...