题目描述

给定一个N个结点的树,结点用正整数1..N编号。每条边有一个正整数权值。用d(a,b)表示从结点a到结点b路边上经过边的权值。其中要求a<b.将这n*(n-1)/2个距离从大到小排序,输出前M个距离值。

题解

把每次点分治时的dfs序写下来,假设我们在一个位置找能够和它拼成一条链的另一个位置,可以发现那些位置的顺序在dfs序上构成了一段连续区间,用ST表+堆维护。

注意在进队列之前先内啥一下。

代码

#include<iostream>
#include<cstdio>
#include<queue>
#include<cmath>
#define N 50002
#define M 16
using namespace std;
int tot,head[N],lo[N*M],st[M][N*M],size[N],dp[N],sum,now,deep[N],root,n,p[M][N*M];
bool vis[N];
int start,ed;
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct edge{int n,to,l;}e[N<<];
inline void add(int u,int v,int l){e[++tot].n=head[u];e[tot].to=v;head[u]=tot;e[tot].l=l;}
struct node{
int now,l,r,sum;
node(int nownum=,int num1=,int num2=){
now=nownum;l=num1;r=num2;
int loo=lo[r-l+];
sum=now+max(st[loo][l],st[loo][r-(<<loo)+]);
}
int calc(){
int loo=lo[r-l+];
if(st[loo][l]>=st[loo][r-(<<loo)+])return p[loo][l];else return p[loo][r-(<<loo)+];
}
bool operator <(const node &b)const{return sum<b.sum;}
}pa[N*M];
priority_queue<node>q;
void getroot(int u,int fa){
size[u]=;dp[u]=;
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa&&!vis[e[i].to]){
int v=e[i].to;
getroot(v,u);
size[u]+=size[v];dp[u]=max(dp[u],size[v]);
}
dp[u]=max(dp[u],sum-size[u]);
if(dp[u]<dp[root])root=u;
}
void getsize(int u,int fa){
size[u]=;
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa&&!vis[e[i].to]){
int v=e[i].to;
getsize(v,u);
size[u]+=size[v];
}
}
void getdeep(int u,int fa){
st[][++now]=deep[u];p[][now]=now;
pa[now]=node(deep[u],start,ed);
for(int i=head[u];i;i=e[i].n)if(!vis[e[i].to]&&e[i].to!=fa){
int v=e[i].to;
deep[v]=deep[u]+e[i].l;
getdeep(v,u);
}
}
inline void calc(int u){
st[][++now]=;p[][now]=now;
pa[now]=node{,now,now};
start=now;ed=now;
for(int i=head[u];i;i=e[i].n)if(!vis[e[i].to]){
int v=e[i].to;
deep[v]=e[i].l;
getdeep(v,u);
ed=now;
}
}
void solve(int u){
calc(u);vis[u]=;
for(int i=head[u];i;i=e[i].n)if(!vis[e[i].to]){
int v=e[i].to;
root=n+;sum=size[v];
getroot(v,u);getsize(root,);
solve(root);
}
}
int main(){
n=rd();int k=rd();int u,v,w;
for(int i=;i<n;++i){
u=rd();v=rd();w=rd();
add(u,v,w);add(v,u,w);
}
dp[root=n+]=n+;sum=n;
getroot(,);getsize(root,);
solve(root);
for(int i=;(<<i)<=now&&i<M;++i)
for(int j=;j+(<<i)-<=now;++j)
st[i][j]=max(st[i-][j],st[i-][j+(<<i-)]),p[i][j]=st[i-][j]>=st[i-][j+(<<i-)]?p[i-][j]:p[i-][j+(<<i-)];
for(int i=;i<=now;++i)lo[i]=lo[i>>]+;
for(int i=;i<=now;++i)pa[i]=node(pa[i].now,pa[i].l,pa[i].r),q.push(pa[i]);///care !!!!
for(int i=;i<=k;++i){
node x=q.top();q.pop();
printf("%d\n",x.sum);
int mid=x.calc();
if(x.l<mid)q.push(node(x.now,x.l,mid-));
if(x.r>mid)q.push(node(x.now,mid+,x.r));
}
return ;
}

BZOJ3784树上的路径的更多相关文章

  1. BZOJ3784 : 树上的路径

    树的点分治,在分治的时候将所有点到根的距离依次放入一个数组q中. 对于一棵子树里的点,合法的路径一定是q[L]..q[R]的某个数加上自己到重心的距离. 定义五元组(v,l,m,r,w),表示当前路径 ...

  2. 2019.01.20 bzoj3784: 树上的路径(二分答案+点分治)

    传送门 点分治好题. 题意简述:给一棵带边权的树,问所有路径中前mmm大的.m≤300000m\le300000m≤300000 思路: 网上有题解写了可以通过什么点分治序转化成超级钢琴那道题的做法蒟 ...

  3. 【BZOJ3784】树上的路径 点分治序+ST表

    [BZOJ3784]树上的路径 Description 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a< ...

  4. 【BZOJ-3784】树上的路径 点分治 + ST + 堆

    3784: 树上的路径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 462  Solved: 153[Submit][Status][Discuss ...

  5. codevs 2756树上的路径

    题意: 2756 树上的路径  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master    题目描述 Description 给出一棵树,求出最小的k,使得,且在树 ...

  6. bzoj 3784: 树上的路径 堆维护第k大

    3784: 树上的路径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 88  Solved: 27[Submit][Status][Discuss] ...

  7. 树上的路径 BZOJ 3784

    树上的路径 [问题描述] 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a<b.将这n*(n-1)/2个距 ...

  8. Codevs 2756 树上的路径

    2756 树上的路径  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master     题目描述 Description 给出一棵树,求出最小的k,使得,且在树中存在 ...

  9. BZOJ3784:树上的路径

    浅谈树分治:https://www.cnblogs.com/AKMer/p/10014803.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem. ...

随机推荐

  1. 怎么使用Fiddler进行抓包

    启动Fiddler,打开菜单栏中的 Tools > Fiddler Options,打开“Fiddler Options”对话框.      在Fiddler Options”对话框切换到“Co ...

  2. 使用cmd查看电脑连接过的wifi密码(二)

    上次写了一个查看wifi的bat文件(https://www.cnblogs.com/feiquan/p/9823402.html),发现有个问题就没法保存到记事本,而且还要处理不同的系统语言,这次重 ...

  3. geth搭建私有网络

    geth --rpc --unlock "3ae88fe370c39384fc16da2c9e768cf5d2495b48,81063419f13cab5ac090cd8329d8fff9f ...

  4. [20190409]pre_page_sga=true与连接缓慢的问题.txt

    [20190409]pre_page_sga=true与连接缓慢的问题.txt --//曾经遇到11g下设置pre_page_sga=true启动缓慢的问题(没有使用hugepages).--//链接 ...

  5. HybridStart发布v1.0测试版

    HybridStart是一款多webview模式的混合应用前端开发框架,本来只是作者自用的一套混合应用开发模板,为了进一步提高混合应用开发效率,近期着重在框架高通用性和易用性方面做了较大改进,比如将U ...

  6. Django REST framework框架介绍和基本使用

    Django REST framework介绍 Django REST framework是基于Django实现的一个RESTful风格API框架,能够帮助我们快速开发RESTful风格的API. 官 ...

  7. Django--cookie(登录用)

    一.cookie产生原因 二.cookie的原理图 三.Django中如何设置/读取/删除cookie 四.Django中如何设置cookie的参数 一.cookie产生原因 HTTP协议的无状态保存 ...

  8. python import详解

    1.import作用 引入模块 2.import的特点 一个程序中,import的模块不会重复被引用,如: # test1.py import test2 print test2.attr # tes ...

  9. Python编码规范(PEP8)及奇技淫巧(不断更新)

    https://blog.csdn.net/MrLevo520/article/details/69155636

  10. web框架开发-模板层

    你可能已经注意到我们在例子视图中返回文本的方式有点特别. 也就是说,HTML被直接硬编码在 Python代码之中. def current_datetime(request): now = datet ...