前言

最近我们公司的部分.NET Core的项目接入了Jaeger,也算是稍微完善了一下.NET团队的技术栈。

至于为什么选择Jaeger而不是Skywalking,这个问题我只能回答,大佬们说了算。

前段时间也在CSharpCorner写过一篇类似的介绍

Exploring Distributed Tracing Using ASP.NET Core And Jaeger

下面回到正题,我们先看一下Jaeger的简介

Jaeger的简单介绍

Jaeger是Uber开源的一个分布式追踪的工具,主要为基于微服务的分布式系统提供监测和故障诊断。包含了下面的内容

  • Distributed context propagation
  • Distributed transaction monitoring
  • Root cause analysis
  • Service dependency analysis
  • Performance / latency optimization

下面就通过一个简单的例子来体验一下。

示例

在这个示例的话,我们只用了jaegertracing/all-in-one这个docker的镜像来搭建,因为是本地的开发测试环境,不需要搭建额外的存储,这个感觉还是比较贴心的。

我们会用到两个主要的nuget包

  1. Jaeger 这个是官方的client
  2. OpenTracing.Contrib.NetCore.Unofficial 这个是对.NET Core探针的处理,从opentracing-contrib/csharp-netcore这个项目移植过来的(这个项目并不活跃,只能自己做扩展)

然后我们会建两个API的项目,一个是AService,一个是BService

其中BService会提供一个接口,从缓存中读数据,如果读不到就通过EF Core去从sqlite中读,然后写入缓存,最后再返回结果。

AService 会通过HttpClient去调用BService的接口,从而会形成调用链。

开始之前,我们先把docker-compose.yml配置一下

version: '3.4'

services:
aservice:
image: ${DOCKER_REGISTRY-}aservice
build:
context: .
dockerfile: AService/Dockerfile
ports:
- "9898:80"
depends_on:
- jagerservice
- bservice
networks:
backend: bservice:
image: ${DOCKER_REGISTRY-}bservice
build:
context: .
dockerfile: BService/Dockerfile
ports:
- "9899:80"
depends_on:
- jagerservice
networks:
backend: jagerservice:
image: jaegertracing/all-in-one:latest
environment:
- COLLECTOR_ZIPKIN_HTTP_PORT=9411
ports:
- "5775:5775/udp"
- "6831:6831/udp"
- "6832:6832/udp"
- "5778:5778"
- "16686:16686"
- "14268:14268"
- "9411:9411"
networks:
backend: networks:
backend:
driver: bridge

然后就在两个项目的Startup加入下面的一些配置,主要是和Jaeger相关的。

public void ConfigureServices(IServiceCollection services)
{
// others .... // Adds opentracing
services.AddOpenTracing(); // Adds the Jaeger Tracer.
services.AddSingleton<ITracer>(serviceProvider =>
{
string serviceName = serviceProvider.GetRequiredService<IHostingEnvironment>().ApplicationName; var loggerFactory = serviceProvider.GetRequiredService<ILoggerFactory>();
var sampler = new ConstSampler(sample: true);
var reporter = new RemoteReporter.Builder()
.WithLoggerFactory(loggerFactory)
.WithSender(new UdpSender("jagerservice", 6831, 0))
.Build(); var tracer = new Tracer.Builder(serviceName)
.WithLoggerFactory(loggerFactory)
.WithSampler(sampler)
.WithReporter(reporter)
.Build(); GlobalTracer.Register(tracer); return tracer;
});
}

这里需要注意的是我们要根据情况来选择sampler,演示这里用了最简单的ConstSampler。

回到BService这个项目,我们添加SQLite和EasyCaching的相关支持。

public void ConfigureServices(IServiceCollection services)
{
// Adds an InMemory-Sqlite DB to show EFCore traces.
services
.AddEntityFrameworkSqlite()
.AddDbContext<BDbContext>(options =>
{
var connectionStringBuilder = new SqliteConnectionStringBuilder
{
DataSource = ":memory:",
Mode = SqliteOpenMode.Memory,
Cache = SqliteCacheMode.Shared
};
var connection = new SqliteConnection(connectionStringBuilder.ConnectionString); connection.Open();
connection.EnableExtensions(true); options.UseSqlite(connection);
}); // Add EasyCaching Inmemory provider.
services.AddEasyCaching(options =>
{
options.UseInMemory("m1");
});
}

然后控制器上面就比较简单了。

// GET api/values
[HttpGet]
public async Task<IActionResult> GetAsync()
{
var provider = _providerFactory.GetCachingProvider("m1"); var obj = await provider.GetAsync("mykey", async () => await _dbContext.DemoObjs.ToListAsync(), TimeSpan.FromSeconds(30)); return Ok(obj);
}

AService就是通过HttpClient去调用上面的这个接口即可。

// GET api/values
[HttpGet]
public async Task<string> GetAsync()
{
var res = await GetDemoAsync();
return res;
} private async Task<string> GetDemoAsync()
{
var client = _clientFactory.CreateClient(); var request = new HttpRequestMessage
{
Method = HttpMethod.Get,
RequestUri = new Uri($"http://bservice/api/values")
}; var response = await client.SendAsync(request); response.EnsureSuccessStatusCode(); var body = await response.Content.ReadAsStringAsync(); return body;
}

到这里的话,代码这块是ok了,下面就来看看效果。

先通过http://localhost:9898/api/values/访问几次AService

大概能得到一个这样的结果

然后去Jaeger的界面上我们可以看到,两个服务已经注册上来了。

选A,B其中一个去搜索,就可以看到下面的结果

这个就最外层,能看到这些请求一些宏观的信息。

我们选界面上最后一个,也就是第一个请求,进去看看细节

从上面这个图大概也能看出来,做了一些什么操作,请求来到AService,它就发起了HTTP请求到BServiceBService则是先通过EasyCaching去取缓存,显然缓存中没数据,它就去读数据库了。

和另外的请求对比一下,可以发现是少了查数据库这一步操作的。这也是为什么上面的是10个span,而下面的才8个。

再来看看两个请求的对比图。

上图中那些红色和绿色的块就是两个请求的差异点了。

回去看看其他细节,可以发现类似下面的内容

有很多日志相关的东西,这些东西在这里可能没有太多实际的作用,我们可以通过调整日志的级别来不让它写入到Jaeger中。

或者是通过下面的方法来过滤

services.AddOpenTracing(new System.Collections.Generic.Dictionary<string,LogLevel>
{
{"AService", LogLevel.Information}
});

最后就是依赖图了。

写在最后

虽说Jaeger用起来挺简单的,但是也是有点美中不足的,不过这个锅不应该是Jaeger来背的,主要还是很多我们常用的库没有直接的支持Diagnostic,所以能监控到的东西还是略少。

不过在github发现了ClrProfiler.Trace这个项目,可以通过clrprofiler来解决上面的问题。

最后是本文的示例代码

JaegerDemo

ASP.NET Core使用Jaeger实现分布式追踪的更多相关文章

  1. ASP.NET Core 使用 Redis 实现分布式缓存:Docker、IDistributedCache、StackExchangeRedis

    ASP.NET Core 使用 Redis 实现分布式缓存:Docker.IDistributedCache.StackExchangeRedis 前提:一台 Linux 服务器.已安装 Docker ...

  2. ASP.NET Core 使用 JWT 搭建分布式无状态身份验证系统

    为什么使用 Jwt 最近,移动开发的劲头越来越足,学校搞的各种比赛都需要用手机 APP 来撑场面,所以,作为写后端的,很有必要改进一下以往的基于 Session 的身份认证方式了,理由如下: 移动端经 ...

  3. 用asp.net core结合fastdfs打造分布式文件存储系统

    最近被安排开发文件存储微服务,要求是能够通过配置来无缝切换我们公司内部研发的文件存储系统,FastDFS,MongDb GridFS,阿里云OSS,腾讯云OSS等.根据任务紧急度暂时先完成了通过配置来 ...

  4. asp.net core mcroservices 架构之 分布式日志(一)

    一 简介 无论是微服务还是其他任何分布式系统,都需要一个统一处理日志的系统,这个系统 必须有收集,索引,分析查询的功能.asp .net core自己的日志是同步方式的,正如文档所言: 所以必须自己提 ...

  5. ASP.Net Core 使用Redis实现分布式缓存

    本篇我们记录的内容是怎么在Core中使用Redis 和 SQL Server 实现分布式缓存. 一.文章概念描述   分布式缓存描述: 分布式缓存重点是在分布式上,相信大家接触过的分布式有很多中,像分 ...

  6. asp.net core microservices 架构之分布式自动计算(三)-kafka日志同步至elasticsearch和kibana展示

    一 kafka consumer准备 前面的章节进行了分布式job的自动计算的概念讲解以及实践.上次分布式日志说过日志写进kafka,是需要进行处理,以便合理的进行展示,分布式日志的量和我们对日志的重 ...

  7. asp.net core microservices 架构之 分布式自动计算(一)

       一:简介   自动计算都是常驻内存的,没有人机交互.我们经常用到的就是console job和sql job了.sqljob有自己的宿主,与数据库产品有很关联,暂时不提.console job使 ...

  8. asp.net core microservices 架构之 分布式自动计算(二)

    一  简介                   上一篇介绍了zookeeper如何进行分布式协调,这次主要讲解quartz使用zookeeper进行分布式计算,因为上一篇只是讲解原理,而这次实际使用, ...

  9. asp.net core mcroservices 架构之 分布式日志(三):集成kafka

    一 kafka介绍 kafka是基于zookeeper的一个分布式流平台,既然是流,那么大家都能猜到它的存储结构基本上就是线性的了.硬盘大家都知道读写非常的慢,那是因为在随机情况下,线性下,硬盘的读写 ...

随机推荐

  1. C++第四课:类的使用(二)[个人见解]

    前面说到C++类的名字自定义要有含义,成员函数名也同样如此. 一个好的程序员除了让自己能看懂代码外,那是能力,也能让别人看懂,那是本事. 我们来看第一个特性:继承! 什么是继承? 小编不说概念性的定义 ...

  2. CentOS7更换国内源

    前言 CentOS 有个很方便的软件安装工具yum,但是默认安装完CentOS,系统里使用的是国外的CentOS更新源,这就造成了我们使用默认更新源安装或者更新软件时速度很慢的问题,甚至更新失败. 为 ...

  3. Git Log描述乱码问题解决方法

    在git bash 中执行以下命令:git config --global core.quotepath off git config --global --unset i18n.logoutpute ...

  4. Javascript Read Excel

    本文引用以下路径 https://www.cnblogs.com/liuxianan/p/js-excel.html

  5. php面向对象三大特征

    封装:对外只告诉你如何操作,内部结构不需要你知道. 对外只提供可操作的接口(方法),对内的数据操作不可见 继承:子类可以继承父类的属性和方法,但是有限继承,public  protected  pri ...

  6. 实现lodash.get功能

    function deepGet(object, path, defaultValue) { return (!Array.isArray(path) ? path.replace(/\[/g, '. ...

  7. Openstack的视频学习

    0.安装环境准备 部署架构: 网络模式(红色Net0为管理网络,Net1接外网,Net2是接虚拟机网络流量的): 虚拟化平台为VirtualBox,虚拟网络Host-Only网络的配置: Net0:管 ...

  8. Vue 过滤器的使用

    Vue官方文档是这样说的:Vue过滤器用于格式化一些常见的文本. 在实际项目中的使用: 定义过滤器 在src定义一个filter.js文件,里面定义过滤器函数,在最后要使用 exprot defaul ...

  9. js高级3

    1.解决函数内this的指向 可以在函数外提前声明变量_this/that=this 通过apply和call来修改函数内的this指向 (1)二者区别 用法是一样的,就是参数形式不一样        ...

  10. libguestfs手册(2):guestfish command

    添加一个drive:guestfs_add_drive_opts add-drive filename [readonly:true|false] [format:..] [iface:..] [na ...