一、组网需求

由于公司人员激增,接入层交换机提供的端口数目已经不能满足PC的接入需求。现需要在保护现有投资的基础上扩展端口接入数量,并要求网络易管理、易维护。

二、组网图  

    

三、配置思路

  Device A提供的接入端口数目已经不能满足网络需求,需要另外增加一台设备Device B。(本文以两台设备组成IRF为例,在实际组网中可以根据需要,将多台设备组成IRF,配置思路和配置步骤与本例类似) 。鉴于第二代智能弹性架构IRF 技术具有管理简便、网络扩展能力强、可靠性高等优点,所以本例使用IRF技术构建接入层(即在Device A和Device B上配置IRF功能)。为了防止万一IRF链路故障导致IRF分裂、网络中存在两个配置冲突的IRF,需要启用MAD检测功能。因为接入层设备较多,我们采用LACP MAD检测。

四、配置步骤

  为便于区分,下文配置中假设IRF形成前Device A的系统名称为DeviceA,Device B的系统名称为Device B;中间设备Device C的系统名称为DeviceC。

(1)配置设备编号

# Device A保留缺省编号为1,不需要进行配置。

# 在Device B上将设备的成咒编号修改为2。

<DeviceB> system-view
[DeviceB] irf member renumber
Warning: Renumbering the switch number may result in configuration change or loss. Continue? [Y/N]:y
[DeviceB]

(2)将两台设备断电后,按图所示连接IRF链路,然后将两台设备上电。

# 在Device A上创建设备的IRF端口2,与物理端口Ten-GigabitEthernet1/1/2绑定,并保存配置。

<DeviceA> system-view
[DeviceA] interface ten-gigabitethernet //
[DeviceA-Ten-GigabitEthernet1//] shutdown
[DeviceA] irf-port /
[DeviceA-irf-port1/] port group interface ten-gigabitethernet //
[DeviceA-irf-port1/] quit
[DeviceA] interface ten-gigabitethernet //
[DeviceA-Ten-GigabitEthernet1//] undo shutdown
[DeviceA-Ten-GigabitEthernet1//] save

# 在Device B上创建设备的IRF端口1,与物理端口Ten-GigabitEthernet2/1/1绑定,并保存配置。

<DeviceB> system-view
[DeviceB] interface ten-gigabitethernet //
[DeviceB-Ten-GigabitEthernet2//] shutdown
[DeviceB] irf-port /
[DeviceB-irf-port2/] port group interface ten-gigabitethernet //
[DeviceB-irf-port2/] quit
[DeviceB] interface ten-gigabitethernet //
[DeviceB-Ten-GigabitEthernet2//] undo shutdown
[DeviceB-Ten-GigabitEthernet2//] save

# 激活Device A的IRF端口配置。

[DeviceA-Ten-GigabitEthernet1//] quit
[DeviceA] irf-port-configuration active

# 激活Device B的IRF端口配置。

[DeviceA-Ten-GigabitEthernet2//] quit
[DeviceA] irf-port-configuration active

(3)两台设备间将会进行Master竞选,竞选失败的一方将自动重启,重启完成后,IRF形成,系统名称统一为Device A。

(4)配置LACP MAD检测

# 创建一个动态聚合端口,并使能LACP MAD检测功能。

<DeviceA> system-view
[DeviceA] interface bridge-aggregation
[DeviceA-Bridge-Aggregation2] link-aggregation mode dynamic
[DeviceA-Bridge-Aggregation2] mad enable
[DeviceA-Bridge-Aggregation2] quit

# 在聚合端口中添加成员端口GigabitEthernet1/0/1和GigabitEthernet2/0/1,专用于两台IRF成员设备与中间设备进行LACP MAD检测。

[DeviceA] interface gigabitethernet //
[DeviceA-GigabitEthernet1//] port link-aggregation group
[DeviceA-GigabitEthernet1//] quit
[DeviceA] interface gigabitethernet //
[DeviceA-GigabitEthernet2//] port link-aggregation group

(5)中间设备Device C的配置,Device C作为一台中间设备需要支持LACP功能,用来转发、处理LACP协议报文,协助Device A和Device B进行多Active检测。从节约成本的角度考虑,使用一台支持LACP功能的交换机即可。

# 创建一个动态聚合端口

<DeviceC> system-view
[DeviceC] interface bridge-aggregation
[DeviceC-Bridge-Aggregation2] link-aggregation mode dynamic
[DeviceC-Bridge-Aggregation2] quit

# 在聚合端口中添加成员端口GigabitEthernet1/0/1和GigabitEthernet1/0/2,用于进行LACP MAD检测。

[DeviceC] interface gigabitethernet //
[DeviceC-GigabitEthernet1//] port link-aggregation group
[DeviceC-GigabitEthernet1//] quit
[DeviceC] interface gigabitethernet //
[DeviceC-GigabitEthernet1//] port link-aggregation group

H3C交换机IRF典型配置举例LACP MAD检测方式的更多相关文章

  1. H3C BFD MAD检测方式的IRF典型配置举例

    一.组网需求 由于网络规模迅速扩大,当前中心交换机(Device A)转发能力已经不能满足需求,现需要在保护现有投资的基础上将网络转发能力提高一倍,并要求网络易管理.易维护. 二.组网图 三.配置思路 ...

  2. H3C 端口绑定典型配置举例

  3. H3C 802.1X典型配置举例

  4. H3C交换机console登录配置 v7

    一.通过con口只需输入password登陆交换机. [H3C]user-interface aux 0 设置认证方式为密码验证方式 [H3C-ui-aux0] authentication-mode ...

  5. JVM调优总结(七)-典型配置举例1

    以下配置主要针对分代垃圾回收算法而言. 堆大小设置 年轻代的设置很关键 JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理 ...

  6. java虚拟机学习-JVM调优总结-典型配置举例(10)

    以下配置主要针对分代垃圾回收算法而言. 堆大小设置 年轻代的设置很关键 JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理 ...

  7. JVM调优总结(五)-典型配置举例

    以下配置主要针对分代垃圾回收算法而言. 堆大小设置 年轻代的设置很关键 JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制:系统的可用虚拟内存限制:系统的可用物理 ...

  8. H3C交换机DHCP基础配置案例 v7版本

    一.需求 要求在Switch A上配置DHCP服务器功能实现:• 为网络内的客户端动态分配 10.1.1.0/24 网段内的 IP 地址.租用有效期限. DNS 信息.网关地址等配置信息:• 根据 S ...

  9. JVM调优总结(八)-典型配置举例2

    常见配置汇总 堆设置 -Xms:初始堆大小 -Xmx:最大堆大小 -XX:NewSize=n:设置年轻代大小 -XX:NewRatio=n:设置年轻代和年老代的比值.如:为3,表示年轻代与年老代比值为 ...

随机推荐

  1. IP通信基础课堂笔记----关于数链层

    课前回顾 IOS从上到下分别有:应用层,传输层,网络层,数链层,物理层. IP是网络层的地址,MAC是数链层的地址,IP必须通过ARP才能转换成MAC地址. 课堂内容 1.如何在数链层实现发送端数据无 ...

  2. 字符串a-b

    #include<iostream> #include<stdio.h> #include<algorithm> #include<cmath> #in ...

  3. 转:vim模式下报错E37: No write since last change (add ! to override)

    故障现象: 使用vim修改文件报错,系统提示如下: E37: No write since last change (add ! to override) 故障原因: 文件为只读文件,无法修改. 解决 ...

  4. 关于Hibernate级联更新插入信息时提示主键不为空的问题“org.hibernate.StaleStateException: Batch update returned unexpected row count from update: 0 actual row count: 0 expected: 1 ”

    org.hibernate.StaleStateException: Batch update returned unexpected row count from update: 0 actual ...

  5. JAVA字符串的常见处理和操作

    1.纯数字字符串补0为指定位,格式化输出(例如00482这样) 使用String.format处理: int mNumber = 1; // 0 代表前面补充0 // 4 代表长度为4 // d 代表 ...

  6. JSON的介绍与细节

    一.关于JSON JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式.采用完全独立于编程语言的文本格式来存储和表示数据.简洁和清晰的层次结构 ...

  7. 信号报告-java

    无线电台的RS制信号报告是由三两个部分组成的: R(Readability) 信号可辨度即清晰度. S(Strength) 信号强度即大小. 其中R位于报告第一位,共分5级,用1-5数字表示. 1-- ...

  8. 前端工程化基础-vue

    由浅入深支持更多功能 1.安装最新版本的node.js和NPM,并了解NPM基本用法. 2.创建一个目录demo.使用npm 初始化配置: npm init  ,执行后会有一系列选项,可按回车快速确认 ...

  9. 更改手机系统的User-Agent & okhttp

    okhttp 和 volley 1. 之前用的是volley,其中一部分功能,比如User-Agent,是系统去处理的,改成okhttp库后,这部分功能需要浏览器自己处理 2. 具体区别可以参考: h ...

  10. app内嵌vue h5,安卓和ios拦截H5点击事件

    安卓和ios拦截h5点击事件,这个函数事件必须是暴漏在window下的 安卓和ios拦截普通h5函数: <div onclick = "show(),window.android.sh ...