随着云计算、大数据、移动互联网等新技术的普及,部署大量虚拟机成为一种必然趋势。解决这些虚拟机迁移问题理想的方案是在传统单层网络(Underlay)基础上叠加(Overlay)一层逻辑网络,将网络分成两个组成部分。Overlay网络和Underlay网络是相互独立的,Overlay网络使用Underlay网络点对点传递报文,而报文如何传递到Overlay网络的目的节点完全取决于Underlay网络的控制平面和数据平面,报文在Overlay网络入和出节点的处理则完全由Overlay网络的封装协议来决定。

  1. Underlay网络:以太网从最开始设计出来就是一个分布式网络,没有中心的控制节点,网路中的各个设备之间通过协议传递的方式学习网络的可达信息,由每台设备自己决定要如何转发,这直接导致了没有整体观念,不能从整个网络的角度对流量进行调控。由于要完成所有网络设备之间的互通,就必须使用通用的语言,这就是网络协议,RFC就是网络协议的规范,就基本保证了整个网络世界的正常运行。Underlay就是当前数据中心网路基础转发架构的网络,只要数据中心网络上任意两点路由可达即可,指的是物理基础层。可以通过物理网络设备本身的技术改良、扩大设备数量、带宽规模等完善Underlay网络,其包含了一切现有的传统网络技术。

  2. Overlay网络:在网络技术领域,是一种网络架构上叠加的虚拟化技术模式,对基础网络不进行大规模修改的条件下,实现应用在网络上的承载,并能与其它网络业务分离。它是建立在已有网络上的虚拟网,用逻辑节点和逻辑链路构成了Overlay网络。Overlay网络是具有独立的控制和转发平面,对于连接在Overlay边缘设备之外的终端系统来说,物理网络是透明的。通过部署Overlay网络,可以实现物理网络向云和虚拟化的深度延伸,使云资源池化能力可以摆脱物理网络的重重限制,是实现云网融合的关键。Overlay网络也是一个网络,不过是建立在Underlay网络之上的网络。Overlay网络的节点通过虚拟的或逻辑的链接进行通信,每一个虚拟的或逻辑的链接对应于Underlay网络的一条路径(Path),由多个前后衔接的链接组成。Overlay技术可以分为网络Overlay,主机Overlay和混合式Overlay三大类

从静态和动态两个角度来审视网络:

从静态的角度来看,网络可表示为数据结构中的图(Graph),网络的节点(如交换机和路由器,一些文献把他们统称为Datapath)是为图的顶点(Vertex),而链接(Link)就是图的边(Edge),这就是网络的拓扑视图。对于每一个网络节点,其数据(Data Traffic)转发行为由一系列的查询表(Lookup Table)如二层MAC表(L2 MAC Table)、三层路由表(L3 FIB Table),ACL(Access Control Lists)表来定义。当从某个端口收到一个数据报文(Packet)或数据帧(Frame)时,转发引擎(Forwarding Engine)通过解析,查表,应用策略(如 QoS),最后,将报文或帧从另一个端口转出。这里只是给出非常粗略的描述,实际的情况要复杂很多,其实这也就是我们平常所说的网络的数据平面(Data Plane),对应于物理交换机的交换芯片的转发引擎的功能。当然,也可以看做SDN模式下,由Controller控制的数据转发设备(如OpenFlow交换机)

从动态的角度来看,网络把数据流(Data Traffic)从一个和网络连接的主机(Host)送到另一个和网络连接的主机,这里,主机可以是物理服务器,也可以是虚拟计算机(Virtual Machine)。为此,事先要有一个定义好的地址空间,每个主机和网络节点都被分配(动态的或静态的)一个唯一标识自己的地址,如IP地址。这样,根据地址就能够识别出每个主机在网络中的位置,即接入网络的入口节点。两个主机要交换数据,首先要计算出他们之间的数据流的通路,上文把网络比作数据结构的图,这里的通路当然相当于图中的路径(Path)了,可表示为一个向量,其中的每个元素代表一个网络节点/顶点,两个相邻的网络节点/顶点之间有链路/边相连接,向量的头元素和尾元素分别与通信的主机相连。数据流透过这一通路,经过中间网络节点的中转,就从源主机到达目的主机。几乎所有的L3路由协议,无论是距离矢量(distance-vector)路由协议如BGP还是链路状态(link-state)路由协议如OSPF,顾名思义,都有一个简单的目标,就是计算并生成主机或子网之间的路由,即通路,并最终将具体的Route Entries安装到网络节点的FIB中。本质上,L2的网络也有自己的机制来计算通路,转发数据,如Ethernet交换机通过MAC地址学习(MAC Learning)来获取数据帧的Egress端口,从而将数据流转发到目的主机。上述的这一动态过程是由网络的控制平面(Control Plane)来管理的,网络操作员(Network Operator)通过控制平面配置L2/L3的路由和转发协议,达到数据在主机之间交换的目的。对应于交换机,控制平面就是运行在CPU之上的操作系统;而对于SDN的模式来说,控制平面是由Controller及上面的应用来实现的。更通俗地讲,在两个主机交换数据之前,网络的控制平面需要回答三个问题:第一,你是谁?(目的主机的地址是什么?);第二,你在哪里?(目的主机和网络的哪个节点连接?);第三,如何找到你?(到达目的主机的通路如何建立?)。

简单总结一下,网络有两部分构成:第一,由网络节点(datapath)作为顶点和网络链接作为边构成的静态的拓扑图;第二,由各种网络协议构成的动态的数据流路由转发机制。若是忘掉那些枯燥繁杂的各式各样的系统、设备、协议的配置细节,网络其实就是这点事儿,看起来并不复杂。虚拟网络作为逻辑意义上的网络,具备网络的所有组成要素,包括网络拓扑,如网络节点、链接、网络节点中的查询表等,相对于物理网络,这些只不过是虚拟的,逻辑的,软件实现的。同样地,虚拟网络也可以是L2网络或L3网络,分别使用不同的控制平面管理,因此也是可配置的。

sdn学习-1(概念:Underlay网络和Overlay网络)的更多相关文章

  1. 数据中心网络架构的问题与演进 — Overlay 网络

    目录 文章目录 目录 前文列表 数据中心网络架构演进回顾 Overlay 网络 Overlay 网络的优势 基于 VxLAN Overlay 的 Spine-Leaf 网络架构 参考文章 前文列表 & ...

  2. Overlay网络与物理网络的关系

    编者按:无论是云计算还是SDN都把注意力集中在数据中心网络的建设上,各种解决方案层出不穷,其中以VMware为代表的软件厂商提出Overlay网络方案后,为数据中心网络的发展提出了新的思路.那么Ove ...

  3. docker overlay网络实现

    DOCKER的内置OVERLAY网络 内置跨主机的网络通信一直是Docker备受期待的功能,在1.9版本之前,社区中就已经有许多第三方的工具或方法尝试解决这个问题,例如Macvlan.Pipework ...

  4. 基于多租户的云计算Overlay网络

    一 . 为什么需要Vxlan 1. vlan的数量限制 4096个vlan远不能满足大规模云计算数据中心的需求 2. 物理网络基础设施的限制 基于IP子网的区域划分限制了需要二层网络连通性的应用负载的 ...

  5. SDN学习

    SDN & OpenFlow & Open vSwitch SDN SDN(软件定义网络)是一个概念.是一个思想.一个框架.是一种网络设计理念,它有三个特征 控制平面与转发平面分离 控 ...

  6. Overlay网络技术之vxvlan

    了解云计算数据中心网络架构的过程中,看到这么一篇不错的关于大二层技术overlay的文章,转载分享给大家! 一. 传统网络面临的问题 随着企业业务的快速扩展需求,IT做为基础设施,快速部署和减少投入成 ...

  7. docker 跨主机网络:overlay 简介

    简介 docker 在早前的时候没有考虑跨主机的容器通信,这个特性直到 docker 1.9 才出现.在此之前,如果希望位于不同主机的容器能够通信,一般有几种方法: 使用端口映射:直接把容器的服务端口 ...

  8. Docker 新网络 overlay 网络

    Overlay网络是指在不改变现有网络基础设施的前提下,通过某种约定通信协议,把二层报文封装在IP报文之上的新的数据格式. 这样不但能够充分利用成熟的IP路由协议进程数据分发,而且在Overlay技术 ...

  9. SDN学习之RYU源码安装

    近些天开始接触SDN,即软件定义网络的学习,由于是初学者,想通过写博客来分享自己对sdn学习中所使用的ryu以及mininet仿真软件. Mininet源码安装: 尽管网上对mininet的安装教程很 ...

随机推荐

  1. chrome浏览器模拟手机端:jquery click()点击无效解决方法

    $(".sku-wrap .ok").click(); chrome浏览器模拟手机端,在油猴插件中写JS代码,然后发现click()点击失效. 解决方法:jquery的click( ...

  2. .NET SQLServer数据库转MySql

    第一步:找到下图两个组件,卸载. 第二步:NuGet下载下图组件. 第三步:在连接数据库OnConfiguring方法处,做如下修改: protected override void OnConfig ...

  3. (04) springboot 下的springMVC和jsp和mybatis

    1. springboot 和springmvc下的注解完全一样(新增了一些有用的) 常用的注解如下: @Controller @RestController= @Controller + @Resp ...

  4. There are multiple modules with names that only differ in casing. 黄色warning

    There are multiple modules with names that only differ in casing.有多个模块同名仅大小写不同This can lead to unexp ...

  5. Nuget连接失败的问题

    ---恢复内容开始--- .net 项目开发管理中我们经常使用Nuget管理我们的类库.由于某些原因 nuget v3的镜像源https://api.nuget.org/v3/index.json 经 ...

  6. stackExchange.redis 实现模糊匹配批量查询

    如果使用redis的频次较高,那么业务中经常会出现需要根据关键字进行批量查询,所以总结一下StackExchange中使用批量查询的方法(如果数据量很大,那么在redis中模糊查询很耗时,请慎用!) ...

  7. Unity中Terrain中刷出的树木模糊解决办法

    Billboard Start  该项用于设定摄像机将树渲染为广告牌的距离.

  8. linux 虚拟机配置固定ip

    参考这边博客: https://blog.csdn.net/u014466635/article/details/80284792 但是这个有个小问题,就是没有配置dns,导致连不上公网 /etc/s ...

  9. MOS管应用概述(四):基本参数

    mos管的基本参数,大家熟悉的必然是Ids电流,Ron导通电阻,Vgs的阈值电压,Cgs.Cgd.Cds这几项,然而在高速应用中,开关速度这个指标比较重要.<ignore_js_op> 上 ...

  10. lintcode 程序题

    1500802025 才仁代吉 第一链表类参数是整形链表,广度优先遍历: 队列是先进先出的概念 所以使用于保存节点 2插树的话 1个节点有个2个子节点 先将根节点入队,然后访问根节点数据(此时让根节点 ...