《DNA比对》蓝桥杯复赛试题
题目描述
脱氧核糖核酸即常说的DNA,是一类带有遗传信息的生物大分子。它由4种主要的脱氧核苷酸(dAMP、dGMP、dCMT和dTMP)通过磷酸二酯键连接而成。这4种核苷酸可以分别记为:A、G、C、T。
DNA携带的遗传信息可以用形如:AGGTCGACTCCA.... 的串来表示。DNA在转录复制的过程中可能会发生随机的偏差,这才最终造就了生物的多样性。
为了简化问题,我们假设,DNA在复制的时候可能出现的偏差是(理论上,对每个碱基被复制时,都可能出现偏差):
1. 漏掉某个脱氧核苷酸。例如把 AGGT 复制成为:AGT
2. 错码,例如把 AGGT 复制成了:AGCT
3. 重码,例如把 AGGT 复制成了:AAGGT
如果某DNA串a,最少要经过 n 次出错,才能变为DNA串b,则称这两个DNA串的距离为 n。
例如:AGGTCATATTCC 与 CGGTCATATTC 的距离为 2
你的任务是:编写程序,找到两个DNA串的距离。
【输入、输出格式要求】
用户先输入整数n(n<100),表示接下来有2n行数据。
接下来输入的2n行每2行表示一组要比对的DNA。(每行数据长度<10000)
程序则输出n行,表示这n组DNA的距离。
例如:用户输入:
3
AGCTAAGGCCTT
AGCTAAGGCCT
AGCTAAGGCCTT
AGGCTAAGGCCTT
AGCTAAGGCCTT
AGCTTAAGGCTT
则程序应输出:
1
1
2
思路分析
看了好几篇动态规划的文章,终于明白这个题是怎么做的了,后天就是决赛了,只能水一把了~
相关文章链接:
与其说是DNA比对,不如说是字符串比对,用户输入两个字符串str1和str2,我们把str1作为标准串,由str2变为标准串可以通过重复,丢失和修改三种方法。
重复就是str1[i]=A , str1[i+1]=C , str[i+2]=T ,而对应的str2[i]=A ,str2[i+1] = A ,str2[i+2]=C
丢失就是str1[i]=A , str1[i+1]=C , str[i+2]=T ,而对应的str2[i]=A ,str2[i+1] = T
修改就是str1[i]=A , str1[i+1]=C , str[i+2]=T ,而对应的str2[i]=A ,str2[i+1] = G,str2[i+2]=T
我们假设str1的长度为len1,str2的长度为len2,用数组dp[len1][len2]表示str2变化为str1最少需要几步,也就是我们最后的答案。
我们把这个问题细化,假设dp[i][j]表示str2的字串str1[0]~str1[i-1]变成str1的字串str2[0]~str2[j-1]最少需要的步数
那么对于dp[i][j]可能有两种情况:
str1[i] == str2[j] ,这个时候,dp[i][j] = dp[i-1][j-1]
str1[i] != str2[j] ,这个时候,分为三种情况:
重复的情况:dp[i][j] = dp[i][j-1] +1
ACT
ACTT
dp[3][4] = dp[3][3] +1,因为此时str2的子串比str1的子串多出了一个字符,所以让j回到多出的那个字符前面再进行比较,得到dp[i][j-1]然后在进行了一步重复操作,所以+1
丢失的情况:dp[i][j] = dp[i-1][j] +1
ACTT
ACT
dp[4][3] = dp[3][3] +1 ,因为此时str2的子串比str1的子串丢失了一个字符,所以让i回到丢失的那个字符的前面在进行比较,得到dp[i-1][j]然后再进行一步丢失操作,所以+1
修改的情况:dp[i][j] = dp[i-1][j-1]+1
ACT
AGT
dp[3][3] = dp[2][2]
dp[2][2] = dp[1][1]+1,因为此时str1的子串和str2的长度相同,但是字符不一样,所以i-1,j-1回到上一个状态,然后再+1
编写代码
show you code:
#include<iostream>
#include<string.h>
using namespace std;
int dp[10000][10000]; int min(int a,int b,int c)
{
int min = (a<b)? a:b;
return (min<c)? min:c;
} int dp_fun(string &str1,string &str2)
{
int len1 = str1.length();
int len2 = str2.length();
int i,j;
for(i=0;i<len1;i++)
{
dp[i][0] = i ;
}
for(j=0;j<len2;j++)
{
dp[0][j] = j ;
} for(i=1;i<=len1;i++)
{
for(j=1;j<=len2;j++)
{
if(str1[i-1] == str2[j-1])
{
dp[i][j] = dp[i-1][j-1]; //对应字母相等,dp值不增加
}
else
{
//三个形参分别对应str2在str1的基础上增加,减少和修改的情况
dp[i][j] = min( dp[i][j-1]+1 , dp[i-1][j]+1 , dp[i-1][j-1]+1 );
}
}
}
return dp[len1][len2];
} int main()
{
int n;
string str1,str2;
cin>>n;
while(n--)
{
cin>>str1;
cin>>str2;
cout<<dp_fun(str1,str2)<<endl;
}
return 0;
}
《DNA比对》蓝桥杯复赛试题的更多相关文章
- 蓝桥杯历届试题 地宫取宝 dp or 记忆化搜索
问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走 ...
- 蓝桥杯 历届试题 剪格子(dfs搜索)
历届试题 剪格子 时间限制:1.0s 内存限制:256.0MB 问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+ |* || +--****--+ ||* | ** ...
- 蓝桥杯java试题《洗牌》
问题描述 小弱T在闲暇的时候会和室友打扑克,输的人就要负责洗牌.虽然小弱T不怎么会洗牌,但是他却总是输. 渐渐地小弱T发现了一个规律:只要自己洗牌,自己就一定会输.所以小弱T认为自己洗牌不够均匀,就独 ...
- 蓝桥杯 历届试题 网络寻路(dfs搜索合法路径计数)
X 国的一个网络使用若干条线路连接若干个节点.节点间的通信是双向的.某重要数据包,为了安全起见,必须恰好被转发两次到达目的地.该包可能在任意一个节点产生,我们需要知道该网络中一共有多少种不同的转发路径 ...
- 蓝桥杯 历届试题 约数倍数选卡片 (经典数论+DFS)
闲暇时,福尔摩斯和华生玩一个游戏: 在N张卡片上写有N个整数.两人轮流拿走一张卡片.要求下一个人拿的数字一定是前一个人拿的数字的约数或倍数.例如,某次福尔摩斯拿走的卡片上写着数字“6”,则接下来华生可 ...
- 蓝桥杯 历届试题 九宫重排 (bfs+康托展开去重优化)
Description 如下面第一个图的九宫格中,放着 1~8 的数字卡片,还有一个格子空着.与空格子相邻的格子中的卡片可以移动到空格中.经过若干次移动,可以形成第二个图所示的局面. 我们把第一个图的 ...
- 蓝桥杯历届试题 危险系数(dfs或者并查集求无向图关于两点的割点个数)
Description 抗日战争时期,冀中平原的地道战曾发挥重要作用. 地道的多个站点间有通道连接,形成了庞大的网络.但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系. 我们来定义一个 ...
- 蓝桥杯 历届试题 幸运数 dfs
历届试题 幸运数 时间限制:1.0s 内存限制:256.0MB 问题描述 幸运数是波兰数学家乌拉姆命名的.它采用与生成素数类似的"筛法"生成 . 首先从1开始写出自然数1,2, ...
- 蓝桥杯 历届试题 剪格子 dfs
历届试题 剪格子 时间限制:1.0s 内存限制:256.0MB 问题描述 如下图所示,3 x 3 的格子中填写了一些整数. +--*--+--+ |10* 1|52| +--****--+ |20 ...
随机推荐
- ECMALL转空间后出现空白问题解析
今天客户网站做完的ECMall测试站,将数据库和代码分别传到了正式空间中.通过浏览器浏览,整个页面一片空白. 第一个反应是数据库配置有问题.打开网站根目录下data/config.ini.php,内容 ...
- 打包python文件,让文件程序化
通过对源文件打包,Python程序可以在没有安装 Python的环境中运行,也可以作为一个独立文件方便传递和管理. 现在网上主流的打包方式有两种py2exe或者pyinstaller两款多平台的Pyt ...
- k8s1.4.3安装实践记录(2)-k8s安装
前面一篇已经安装好了ETCD.docker与flannel(k8s1.4.3安装实践记录(1)),现在可以开始安装k8s了 1.K8S 目前centos yum上的kubernetes还是1.2.0, ...
- java代码--------构造方法的调用
总结: package com.sads; //构造方法何时被调用, //构造方法里的内容先执行 public class Sdw { static { System.out.println(&quo ...
- PorterDuff.Mode
参考:http://weishu.me/2015/09/23/Xfermode-in-android/ Sa = Source alphaDa = Dest alphaSc = Source colo ...
- ubuntu下面搭建SolrCloud集群
首先要先把ubuntu环境搭建好,配置好静态IP,我这边配置的是3台机子,solr搭建集群至少是2台. 192.168.0.15 主机 192.168.0.16 从机 192.168.0.17 ...
- 缺乏libaio包导致报The server quit without updating PID file
背景: 直接解压安装mysql5.7.18,解压mysql-5.7.18-linux-glibc2.5-x86_64.tar.gz,直接拷贝另外一台数据库的数据目录,启动mysql过程无日志输出,报E ...
- Joker的运维开发之路
python 1--数据类型,流程控制 2--数据类型详细操作,文件操作,字符编码 https://mp.weixin.qq.com/s/i3lcIP82HdsSr9LzPgkqww 点开更精彩 目前 ...
- Windows下编译sqlite3
一.下载 sqlite-amalgamation-3240000:sqlite源代码,主要需要头文件sqlite3.h sqlite-dll-win32-x86-3240000.zip:sqlite3 ...
- zabbix server的Discover功能,实现zabbix agent 大批量的自动添加,并链接到指定的模版(3)
一.需求 zabbix 服务器可以手动加入zabbix-agent客户端,对于少量的机器,这没有什么.但到了线上,我们有大量的服务器需要监控时,如果再一个个的手动加的话,工作量势必会增加很多.这时,z ...