博弈论教程(A Course in Game Theory)摘录
P4
在我们所研究的模型中,决策主体往往要在不确定条件下进行决策。参与人可能:
- 不能确定环境的客观因素;
- 对博弈中发生的事件不很清楚;
- 不能确定别的不确定参与人的行动;
- 不能确定别的参与人的推理。
为了对不确定情形下的决策建模,几乎所有的博弈论都是用了von Neuman和Morgenstern(1994)及Savage(1972)的理论。也就是,如果结果函数是随机的并被决策主体已知(即,对每一个\(a \in A\), 结果\(g(a)\)是集合\(C\)上的一个不确定事件(概率分布),那么决策主体就被认为是为了最大化一个函数期望值(v-N-M效用)去行动,这个函数给每个结果赋一个值。如果行动与结果间的随机联系未给定,这个决策主体就被认为是按他心中的一个(主观的)概率分布去行动,这个分布决定了任何行动的结果。在这种情形下决策主体被认为将这种行动,即他心中有一个“状态空间”\(\Omega\), 一个\(\Omega\)上的一个概率测度,一个函数\(g : A \times \Omega \to C\), 和一个效用函数\(u : C \to \mathbb{R}\); 他被认为考虑到概率测度去选择一个行动\(a\)来最大化期望值\(u(g(a, \omega))\).--
P6 : 术语与标记--
如果对所有\(x \in \mathbb{R}, x^' \in \mathbb{R}\)及\(a \in [0, 1], f(ax + (1 - a)x^') \geq af(x) + (1 - a)f(x^')\), 则函数\(f : \mathbb{R} \to \mathbb{R}\)为一个凹函数。给定一个函数\(f : X \to \mathbb{R}\), 我们用\(arg max_{x \in X}f(x)\)表示\(f\)的最大值集合,对任何\(Y \subseteq X\), 用\(f(Y)表示集合{f(x) : x \in Y}. 我们用N表示参与人集合。将某个变量的值的集合(每个参与人都对应一个)作为一个*组合*(profile), 用\)(x_i){i \in N)\(表示。或者,假定两次“\)i \in N\(”是确定的,则简单几位\)(x_i)\(. 给定列表\)x{-i} = (x_j){j \in N \diagdown {i}}\(和一个元素\)x_i\(, 我们用\)(x{-i}, x_i)\(表示组合\)(x_i){i \in N}\(. 如果对每个\)i \in N, \textbf{X}i\(是一个集合, 则我们用\)\textbf{X}{-i}\(表示集合\)\times{i \in N \diagdown {i}}\textbf{X}_j$.
博弈论教程(A Course in Game Theory)摘录的更多相关文章
- 如何搭建一个独立博客——简明Github Pages与Hexo教程
摘要:这是一篇很详尽的独立博客搭建教程,里面介绍了域名注册.DNS设置.github和Hexo设置等过程,这是我写得最长的一篇教程.我想将我搭建独立博客的过程在一篇文章中尽可能详细地写出来,希望能给后 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- Linux C 收藏
某招聘要求:熟悉高性能分布式网络服务端设计开发,熟悉epoll.多线程.异步IO.事件驱动等服务端技术: <UNIX环境高级编程(第3版)>apue.h等源码文件的编译安装 <UNI ...
- 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...
- ArcGIS学习推荐基础教程摘录
###########-------------------摘录一--------------------------########### ***************************** ...
- 博弈论(Game Theory) - 04 - 纳什均衡
博弈论(Game Theory) - 04 - 纳什均衡 开始 纳什均衡和最大最小定理是博弈论的两大基石. 博弈不仅仅是对抗,也包括合作和迁就,纳什均衡能够解决这些问题,提供了在数学上一个完美的理论. ...
- 博弈论(Game Theory) - 01 - 前传之占优战略均衡
博弈论(Game Theory) - 01 - 前传之占优战略均衡 开始 我们现在准备攀爬博弈论的几座高峰. 我们先看看在纳什均衡产生之前,博弈论的发展情况. 我们的第一座高峰是占优战略均衡. 囚徒困 ...
- 博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡
博弈论(Game Theory) - 02 - 前传之重复剔除严格劣战略的占优战略均衡 开始 "重复剔除劣战略的严格占优战略均衡"(iterated dominance equil ...
随机推荐
- 微软人工智能公开课 https://mva.microsoft.com/colleges/microsoftai#!jobf=Developer
https://mva.microsoft.com/colleges/microsoftai#!jobf=Developer
- IPP库下FFT的基本实现
首先感谢韩昊同学,他的傅里叶分析入门给我们对数学公式不熟悉的人了解傅里叶算法打开了一扇窗户,其原文发表于知乎:https://zhuanlan.zhihu.com/p/19763358 在了解其基本原 ...
- PythonQt第一例
pythonQt第一例源码如下,主要介绍了简单的使用方式,需要注意的是应用程序的debug版本和release版本必须使用同类型的PythonQt库不可交叉使用. 源码地址:http://files. ...
- 面向对象的JavaScript-004
1. // Below is an example of how to use Object.create() to achieve classical inheritance. This is fo ...
- Python正则表达式的七个使用范例-乾颐堂
作为一个概念而言,正则表达式对于Python来说并不是独有的.但是,Python中的正则表达式在实际使用过程中还是有一些细小的差别. 本文是一系列关于Python正则表达式文章的其中一部分.在这个系列 ...
- cakephp跳转到指定的错误页面
第一步:修改core.php 第二步:创建AppExceptionRender.php文件 参考:https://blog.jordanhopfner.com/2012/09/11/custom-40 ...
- array_combine()
- 如何让springmvc在启动的时候执行特定的业务处理
如何让springmvc在启动的时候执行特定的业务处理 java 的 web服务器启动时,经常会做一些特定的业务逻辑处理,比如数据库初始化, 初始化系统参数,读取配置文库等. 很多web服务的中间件, ...
- asp.net web api 2框架揭秘文摘
第一章 概述 URI 统一资源标识符 URL 统一资源定位符 http方法:get,post,put,delete,head等 状态码:100-199,请求已被接受: 200-299,成功状态: 30 ...
- java中jar打包的方法
jar 应用 先打开命令提示符(win2000或在运行筐里执行cmd命令,win98为DOS提示符),输入jar -help,然后回车(如果你盘上已经有了jdk1.1或以上版本),看到什么:用法:ja ...