【DLX算法】hdu3498 whosyourdaddy
题意:给你一个01矩阵,让你选择尽可能少的行数,使得这些行的并集能够覆盖到所有列。
DLX算法求解重复覆盖问题模板,使用估价函数进行剪枝。
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn=55+5;
const int maxr=55+5;
const int maxnode=55*55+5;
//ÐбàºÅ´Ó1¿ªÊ¼£¬ÁбàºÅΪ1~n£¬½áµã0ÊDZíÍ·½áµã£»½áµã1~nÊǸ÷Áж¥²¿µÄÐéÄâ½áµã
struct DLX{
int n,sz;//ÁÐÊý£¬½áµã×ÜÊý
int S[maxn];//¸÷ÁнáµãÊý
int row[maxnode],col[maxnode];//¸÷½áµãËùÔÚµÄÐÐÁбàºÅ
int L[maxnode],R[maxnode],U[maxnode],D[maxnode];
int ansd,ans[maxr];//½â
void init(int n){//nÊÇÁÐÊý
this->n=n;
for(int i=0;i<=n;++i){
U[i]=i;
D[i]=i;
L[i]=i-1;
R[i]=i+1;
}
R[n]=0; L[0]=n;
sz=n+1; ansd=1000000007;
memset(S,0,sizeof(S));
}
void addRow(int r,vector<int> columns){
int first=sz;
for(int i=0;i<columns.size();++i){
int c=columns[i];
L[sz]=sz-1;
R[sz]=sz+1;
D[sz]=c;
U[sz]=U[c];
D[U[c]]=sz;
U[c]=sz;
row[sz]=r;
col[sz]=c;
++S[c];
++sz;
}
R[sz-1]=first;
L[first]=sz-1;
}
//˳×ÅÁ´±íA£¬±éÀú³ýsÍâµÄÆäËûÔªËØ
#define FOR(i,A,s) for(int i=A[s];i!=s;i=A[i])
void remove(int c){
L[R[c]]=L[c];
R[L[c]]=R[c];
FOR(i,D,c){
FOR(j,R,i){
U[D[j]]=U[j];
D[U[j]]=D[j];
--S[col[j]];
}
}
}
void restore(int c){
FOR(i,U,c){
FOR(j,L,i){
++S[col[j]];
U[D[j]]=j;
D[U[j]]=j;
}
}
L[R[c]]=c;
R[L[c]]=c;
}
bool dfs(int d){
// printf("%d",d);
if(R[0]==0){//ÕÒµ½½â
ansd=d;//¼Ç¼½âµÄ³¤¶È
return 1;
}
//ÕÒ½áµãÊý×îСµÄÁÐc
int c=R[0];//µÚÒ»¸öδɾ³ýµÄÁÐ
FOR(i,R,0){
if(S[i]<S[c]){
c=i;
}
}
remove(c);//ɾ³ýµÚcÁÐ
FOR(i,D,c){//ÓýáµãiËùÔÚÐи²¸ÇµÚcÁÐ
ans[d]=row[i];
FOR(j,R,i){
remove(col[j]);//ɾ³ý½áµãiËùÔÚÐÐÄܸ²¸ÇµÄËùÓÐÆäËûÁÐ
}
if(dfs(d+1)){
return 1;
}
FOR(j,L,i){
restore(col[j]);//»Ö¸´½áµãiËùÔÚÐÐÄܸ²¸ÇµÄÆäËûËùÓÐÁÐ
}
}
restore(c);//»Ö¸´µÚcÁÐ
return 0;
}
bool solve(vector<int>& v){
v.clear();
if(!dfs(0)){
return 0;
}
for(int i=0;i<ansd;++i){
v.push_back(ans[i]);
}
return 1;
} void remov2(int c){
FOR(i,D,c){
L[R[i]]=L[i];
R[L[i]]=R[i];
}
}
void restor2(int c){
FOR(i,U,c){
L[R[i]]=R[L[i]]=i;
}
}
int f(){//¹À¼Ûº¯Êý
bool vis[maxn];
int res=0;
FOR(i,R,0){
vis[i]=1;
}
FOR(i,R,0){
if(vis[i]){
++res;
vis[i]=0;
FOR(j,D,i){
FOR(k,R,j){
vis[col[k]]=0;
}
}
}
}
return res;
}
void df2(int d){
if(d+f()>=ansd){
return;
}
if(R[0]==0){//ÕÒµ½½â
ansd=min(ansd,d);//¼Ç¼½âµÄ³¤¶È
return;
}
//ÕÒ½áµãÊý×îСµÄÁÐc
int c=R[0];//µÚÒ»¸öδɾ³ýµÄÁÐ
FOR(i,R,0){
if(S[i]<S[c]){
c=i;
}
}
FOR(i,D,c){
remov2(i);
FOR(j,R,i){
remov2(j);
}
df2(d+1);
FOR(j,L,i){
restor2(j);
}
restor2(i);
}
} }dlx;
int n,m;
bool a[60][60];
int main(){
//freopen("hdu3498.in","r",stdin);
int x,y;
while(scanf("%d%d",&n,&m)!=EOF){
dlx.init(n);
memset(a,0,sizeof(a));
for(int i=1;i<=n;++i){
a[i][i]=1;
}
for(int i=1;i<=m;++i){
scanf("%d%d",&x,&y);
a[x][y]=a[y][x]=1;
}
for(int i=1;i<=n;++i){
vector<int> columns;
for(int j=1;j<=n;++j){
if(a[i][j]){
columns.push_back(j);
}
}
if(!columns.empty()){
dlx.addRow(i,columns);
}
}
dlx.df2(0);
printf("%d\n",dlx.ansd);
}
return 0;
}
【DLX算法】hdu3498 whosyourdaddy的更多相关文章
- 关于用舞蹈链DLX算法求解数独的解析
欢迎访问——该文出处-博客园-zhouzhendong 去博客园看该文章--传送门 描述 在做DLX算法题中,经常会做到数独类型的题目,那么,如何求解数独类型的题目?其实,学了数独的构建方法,那么DL ...
- 搜索:DLX算法
精确覆盖问题:在一个0-1矩阵中,选定部分行,使得每一列都有且只有一个1.求解一种选法 舞蹈链(Dance Link),也就是一个循环十字链表,可以快速的删掉和恢复某行某列 结合了舞蹈链的搜索就称作D ...
- 【DLX算法】poj2676 Sudoku
DLX算法求解精确覆盖问题模板.赛场上可以参见白书. #include<cstdio> #include<cstring> #include<vector> usi ...
- DLX算法一览
目录: 1 X思想的了解. 链表的递归与回溯. 具体操作. 优化. 一些应用与应用中的再次优化(例题). 练手题 X思想的了解. 首先了解DLX是什么? DLX是一种多元未饱和型指令集结构,DLX 代 ...
- 精确覆盖DLX算法模板另一种写法
代码 struct DLX { int n,id; int L[maxn],R[maxn],U[maxn],D[maxn]; ]; int H[ms]; ) //传列长 { n=nn; ;i<= ...
- 精确覆盖DLX算法模板
代码 struct DLX { int n,id; int L[maxn],R[maxn],U[maxn],D[maxn]; ]; ) //传列长 { n=nn; ;i<=n;i++) U[i] ...
- 舞蹈链(DLX)
舞蹈链(DLX) Tags:搜索 作业部落 评论地址 一.概述 特别特别感谢这位童鞋His blog 舞蹈链是一种优美的搜索,就像下面这样跳舞- 舞蹈链用于解决精确覆盖或者重复覆盖的问题 你可以想象成 ...
- 数独求解 DFS && DLX
题目:Sudoku 题意:求解数独.从样例和结果来看应该是简单难度的数独 思路:DFS 设置3个数组,row[i][j] 判断第i行是否放了j数字,col[i][j] 判断第i列是否放了j数字.squ ...
- POJ2676,HDU4069解决数独的两种实现:DFS、DLX
搜索实现:解决数独有两种思考策略,一种是枚举当前格能填的数字的种数,这里有一优化策略就是先搜索能填入种数小的格子:另一种是考虑处理某一行(列.宫)时,对于某一个没用过的数字,若该行(列.宫)只有一个可 ...
随机推荐
- Yii2 的 redis 应用
在应用的时候需要先对yii2进行扩展安装 如果装有composer直接运行 php composer.phar require --prefer-dist yiisoft/yii2-redis 当然也 ...
- oracle01--单表查询
1. 基本(基础)查询 1.1. 基本查询语法 基本查询是指最基本的select语句. [语法] [知识点]如何使用工具进行查询 在plsql developer中打开查询窗口(执行sql语句): 执 ...
- AUC画图与计算
利用sklearn画AUC曲线 from sklearn.metrics import roc_curve labels=[1,1,0,0,1] preds=[0.8,0.7,0.3,0.6,0.5] ...
- 使用SPLUNK进行简单Threat Hunting
通过订阅网上公开的恶意ip库(威胁情报),与SIEM平台中网络流量日志进行匹配,获得安全事件告警. 比如,这里有一个malware urls数据下载的网站,每天更新一次: https://urlhau ...
- virsh 命令最新整理。 每个“;”之后是正解
1,migrate --domain --destURL --dname --live(热迁移) migrate lf 192.168.16.3 dname 2,managedsave domain ...
- openjudge-NOI 2.6-2988 计算字符串距离
题目链接:http://noi.openjudge.cn/ch0206/2988/ 题解: 首先,题目有误,少了一个添加操作 和求解LCS之类的思路类似 f[i][j]表示a序列中1..i的部分和b序 ...
- Netty框架入门
一.概述 Netty是由JBOSS提供的一个java开源框架. Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速开发高性能.高可靠性的网络服务器和客户端程序. 二. ...
- sshpass-免交互SSH登录工具
sshpass用于自动向命令行提供密码,适用于ssh,scp,rsync,pssh,pscp等ssh系列的命令和工具 #安装sshpass yum install sshpass -y #注:当第一次 ...
- cocos2d-x v2.2 IOS工程支持64-bit 遇坑记录
修改缘由 由于 iPhone 5S的A7 CPU iPhone 6(A8 CPU)都已经支持64-bit ARM 架构,据说64位处理器跑64代码会提高处理能力?因此二月一新提交appstore应 ...
- Sublime Text 2之Emmet插件安装及使用
1.安装Emmet How To Install?Reffer to this link:http://www.ituring.com.cn/article/47310 2.使用Emmet--Abbr ...