【欧拉函数】BZOJ4173-数学
【题目大意】

【思路】
基本是popoqqq大爷的题解,稍微添加了几句自己的注释,方便理解

同理,如果n%k+m%k<k等价于
0

=∑([(n+m)/k]-[n/k]-[m/k])×φ(k) ……因为k不满足条件的时候前面为0
……其实右边两个∑也是k=1..(m+n),但是k>n的时候,[n/k]显然为0,m同理。

【错误点XXXXD】
……程序烧杯,po也是烧杯。不要忘了ll,不要忘了MOD……
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define MOD 998244353
using namespace std;
typedef long long ll; ll phi(ll x)
{
ll ret=x;
for (ll i=;i*i<=x;i++)
{
if (x%i==)
{
ret-=ret/i;
while (x%i==) x/=i;
}
}
if (x>) ret-=ret/x;
return ret%MOD;
} void solve()
{
ll n,m;
scanf("%lld%lld",&n,&m);
printf("%lld",(phi(n)%MOD)*(phi(m)%MOD)%MOD*(n%MOD)%MOD*(m%MOD)%MOD);
} int main()
{
solve();
return ;
}
【欧拉函数】BZOJ4173-数学的更多相关文章
- Java实现 蓝桥杯 算法提高 欧拉函数(数学)
试题 算法提高 欧拉函数 问题描述 老师出了一道难题,小酱不会做,请你编个程序帮帮他,奖金一瓶酱油: 从1-n中有多少个数与n互质? |||||╭══╮ ┌═════┐ ╭╯让路║═║酱油专用车║ ╰ ...
- GCD - Extreme (II) UVA - 11426 欧拉函数_数学推导
Code: #include<cstdio> using namespace std; const int maxn=4000005; const int R=4000002; const ...
- 【BZOJ4173】数学 欧拉函数神题
[BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N ...
- UVaLive 7362 Farey (数学,欧拉函数)
题意:给定一个数 n,问你0<= a <=n, 0 <= b <= n,有多少个不同的最简分数. 析:这是一个欧拉函数题,由于当时背不过模板,又不让看书,我就暴力了一下,竟然A ...
- 数学之欧拉函数 &几道poj欧拉题
欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> ...
- NOIP模拟:切蛋糕(数学欧拉函数)
题目描述 BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...
- UVA 11426 - GCD - Extreme (II) 欧拉函数-数学
Given the value of N, you will have to find the value of G. The definition of G is given below:G =i< ...
- 数学知识-欧拉函数&快速幂
欧拉函数 定义 对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n). 算法思路 既然求解每个数的欧拉函数,都需要知道他的质因子,而不需要个数 因此,我们只需求出他的质因子, ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- COGS2531. [HZOI 2016]函数的美 打表+欧拉函数
题目:http://cogs.pw/cogs/problem/problem.php?pid=2533 这道题考察打表观察规律. 发现对f的定义实际是递归式的 f(n,k) = f(0,f(n-1,k ...
随机推荐
- 解决 IE7 中 display:inline-block 失效的问题
我们在做首页菜单选项的时候,通常会用 li 标签去做,通过对 li 标签设置样式: display:inline-block 可以让 li 标签横排显示.但是这样做,在 IE7 浏览器下面会有一个兼容 ...
- Skipping 'Android SDK Tools, revision 24.0.2'; it depends on 'Android SDK Platform-tools, revision 20' which was not installed.
前几天,同事问我eclipse android sdk怎么不能更新. 更新界面是显示(mirrors.neusoft.edu.cn:80),但是不能更新. 问题描述如下: URL not found: ...
- KKT条件和拉格朗日乘子法详解
\(\frac{以梦为马}{晨凫追风}\) 最优化问题的最优性条件,最优化问题的解的必要条件和充分条件 无约束问题的解的必要条件 \(f(x)\)在\(x\)处的梯度向量是0 有约束问题的最优性条件 ...
- 摘: 给Shapre命名
有两种解决方式: 在 VBA 中将slide中的Shape命名,改变shape.name即可. 另外一种方式就是有点投机取巧:你可以点击shap,右键选择web/alternativetext做些标记 ...
- 如何在Linux下用C/C++语言操作数据库sqlite3(很不错!设计编译链接等很多问题!)
from : http://blog.chinaunix.NET/uid-21556133-id-118208.html 安装Sqlite3: 从www.sqlite.org上下载Sqlite3.2. ...
- IT人员必备linux安全运维之Ssh用途、安全性、身份认证以及配置……【转】
SSH一般用途 提供shell,解决telnet不安全的传输 1.修改默认ssh默认端口 vi /etc/ssh/sshd_config 修改之后重启 >systemctl restart ss ...
- mac 上使用octave的plot错误的解决办法
在mac10.10上使用octave的时候,键入 plot(x, y)的时候会出现如下错误: ^ line : unknown or ambiguous terminal type; type jus ...
- [转载]Windows服务编写原理及探讨(1)
有那么一类应用程序,是能够为各种用户(包括本地用户和远程用户)所用的,拥有用户授权级进行管理的能力,并且不论用户是否物理的与正在运行该应用程序的计算机相连都能正常执行,这就是所谓的服务了. (一)服务 ...
- MySQL-事务特性
1. 事务概念引入: 现实生活中,我们往往经常会进行转账操作,转账操作可以分为两部分来完成,转入和转出.只有这两部分都完成了才可以认为是转账成功.在数据库中,这个过程是使用两条语句来完成的,如果其中任 ...
- 冒泡法的算法最佳情况下的时间复杂度为什么是O(n)
我在许多书本上看到冒泡排序的最佳时间复杂度是O(n),即是在序列本来就是正序的情况下. 但我一直不明白这是怎么算出来的,因此通过阅读<算法导论-第2版>的2.2节,使用对插入排序最佳时间复 ...