1.I2C协议
   2条双向串行线,一条数据线SDA,一条时钟线SCL。
   SDA传输数据是大端传输,每次传输8bit,即一字节。
   支持多主控(multimastering),任何时间点只能有一个主控。
   总线上每个设备都有自己的一个addr,共7个bit,广播地址全0.
   系统中可能有多个同种芯片,为此addr分为固定部分和可编程部份,细节视芯片而定,看datasheet。

1.1 I2C位传输
   数据传输:SCL为高电平时,SDA线若保持稳定,那么SDA上是在传输数据bit;
   若SDA发生跳变,则用来表示一个会话的开始或结束(后面讲)
   数据改变:SCL为低电平时,SDA线才能改变传输的bit

1.2 I2C开始和结束信号
   开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。
   结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。

1.3 I2C应答信号

Master每发送完8bit数据后等待Slave的ACK。
   即在第9个clock,若从IC发ACK,SDA会被拉低。
   若没有ACK,SDA会被置高,这会引起Master发生RESTART或STOP流程,如下所示:

1.4 I2C写流程
写寄存器的标准流程为:
1.    Master发起START
2.    Master发送I2C addr(7bit)和w操作0(1bit),等待ACK
3.    Slave发送ACK
4.    Master发送reg addr(8bit),等待ACK
5.    Slave发送ACK
6.    Master发送data(8bit),即要写入寄存器中的数据,等待ACK
7.    Slave发送ACK
8.    第6步和第7步可以重复多次,即顺序写多个寄存器
9.    Master发起STOP

写一个寄存器

写多个寄存器

1.5 I2C读流程

读寄存器的标准流程为:
1.    Master发送I2C addr(7bit)和w操作1(1bit),等待ACK
2.    Slave发送ACK
3.    Master发送reg addr(8bit),等待ACK
4.    Slave发送ACK
5.    Master发起START
6.    Master发送I2C addr(7bit)和r操作1(1bit),等待ACK
7.    Slave发送ACK
8.    Slave发送data(8bit),即寄存器里的值
9.    Master发送ACK
10.    第8步和第9步可以重复多次,即顺序读多个寄存器

读一个寄存器

读多个寄存器

2. PowerPC的I2C实现

Mpc8560的CCSR中控制I2C的寄存器共有6个。

2.1 I2CADR 地址寄存器

CPU也可以是I2C的Slave,CPU的I2C地址有 I2CADR指定

2.2 I2CFDR 频率设置寄存器

The serial bit clock frequency of SCL is equal to the CCB clock divided by the divider.
用来设置I2C总线频率

2.3 I2CCR 控制寄存器

MEN: Module Enable.    置1时,I2C模块使能
MIEN:Module Interrupt Enable. 置1时,I2C中断使能。
MSTA:Master/slave mode. 1 Master mode,0 Slave mode.
        当1->0时,CPU发起STOP信号
        当0->1时,CPU发起START信号
MTX:Transmit/receive mode select.0 Receive mode,1 Transmit mode
TXAK:Transfer acknowledge. 置1时,CPU在9th clock发送ACK拉低SDA
RSTA:Repeat START. 置1时,CPU发送REPEAT START
BCST:置1,CPU接收广播信息(信息的slave addr为7个0)

2.4 I2CSR 状态寄存器

MCF:0  Byte transfer is in process
     1  Byte transfer is completed

MAAS:当CPU作为Slave时,若I2CDR与会话中Slaveaddr匹配,此bit被置1

MBB:0 I2C bus idle  
     1 I2C bus busy

MAL:若置1,表示仲裁失败
BCSTM:若置1,表示接收到广播信息

SRW:When MAAS is set, SRW indicates the value of the R/W command bit of the calling address, which is sent from the master.
   0 Slave receive, master writing to slave
   1 Slave transmit, master reading from slave

MIF:Module interrupt. The MIF bit is set when an interrupt is pending, causing a processor interrupt request(provided I2CCR[MIEN] is set)

RXAK:若置1,表示收到了ACK

2.5 I2CDR 数据寄存器

这个寄存器储存CPU将要传输的数据。

3. PPC-Linux中I2C的实现
 
  内核代码中,通过I2C总线存取寄存器的函数都在文件drivers/i2c/busses/i2c-mpc.c中
  最重要的函数是mpc_xfer.

  1. static int mpc_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
  2. {
  3. struct i2c_msg *pmsg;
  4. int i;
  5. int ret = 0;
  6. unsigned long orig_jiffies = jiffies;
  7. struct mpc_i2c *i2c = i2c_get_adapdata(adap);
  8. mpc_i2c_start(i2c);    // 设置I2CCR[MEN], 使能I2C module
  9. /* Allow bus up to 1s to become not busy */
  10. //一直读I2CSR[MBB],等待I2C总线空闲下来
  11. while (readb(i2c->base + MPC_I2C_SR) & CSR_MBB) {
  12. if (signal_pending(current)) {
  13. pr_debug("I2C: Interrupted\n");
  14. writeccr(i2c, 0);
  15. return -EINTR;
  16. }
  17. if (time_after(jiffies, orig_jiffies + HZ)) {
  18. pr_debug("I2C: timeout\n");
  19. if (readb(i2c->base + MPC_I2C_SR) ==
  20. (CSR_MCF | CSR_MBB | CSR_RXAK))
  21. mpc_i2c_fixup(i2c);
  22. return -EIO;
  23. }
  24. schedule();
  25. }
  26. for (i = 0; ret >= 0 && i < num; i++) {
  27. pmsg = &msgs[i];
  28. pr_debug("Doing %s %d bytes to 0x%02x - %d of %d messages\n",
  29. pmsg->flags & I2C_M_RD ? "read" : "write",
  30. pmsg->len, pmsg->addr, i + 1, num);
  31. //根据消息里的flag进行读操作或写操作
  32. if (pmsg->flags & I2C_M_RD)
  33. ret = mpc_read(i2c, pmsg->addr, pmsg->buf, pmsg->len, i);
  34. else
  35. ret = mpc_write(i2c, pmsg->addr, pmsg->buf, pmsg->len, i);
  36. }
  37. mpc_i2c_stop(i2c);    //保证为I2CCSR[MSTA]为0,保证能触发STOP
  38. return (ret < 0) ? ret : num;
  39. }
  1. static int mpc_write(struct mpc_i2c *i2c, int target,
  2. const u8 * data, int length, int restart)
  3. {
  4. int i;
  5. unsigned timeout = i2c->adap.timeout;
  6. u32 flags = restart ? CCR_RSTA : 0;
  7. /* Start with MEN */    //以防万一,保证I2C模块使能起来
  8. if (!restart)
  9. writeccr(i2c, CCR_MEN);
  10. /* Start as master */       //写了I2CCR[CCR_MSTA],触发CPU发起START信号
  11. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
  12. /* Write target byte */     //CPU发送一个字节,slave I2C addr和0 (写操作bit)
  13. writeb((target << 1), i2c->base + MPC_I2C_DR);
  14. if (i2c_wait(i2c, timeout, 1) < 0)    //等待slave 发ACK
  15. return -1;
  16. for (i = 0; i < length; i++) {
  17. /* Write data byte */
  18. writeb(data[i], i2c->base + MPC_I2C_DR); //CPU接着发数据,包括reg addr和data
  19. if (i2c_wait(i2c, timeout, 1) < 0)       //等待slave 发ACK
  20. return -1;
  21. }
  22. return 0;
  23. }
  1. static int i2c_wait(struct mpc_i2c *i2c, unsigned timeout, int writing)
  2. {
  3. unsigned long orig_jiffies = jiffies;
  4. u32 x;
  5. int result = 0;
  6. if (i2c->irq == 0)
  7. {    //循环读I2CSR,直到I2CSR[MIF]置1
  8. while (!(readb(i2c->base + MPC_I2C_SR) & CSR_MIF)) {
  9. schedule();
  10. if (time_after(jiffies, orig_jiffies + timeout)) {
  11. pr_debug("I2C: timeout\n");
  12. writeccr(i2c, 0);
  13. result = -EIO;
  14. break;
  15. }
  16. }
  17. x = readb(i2c->base + MPC_I2C_SR);
  18. writeb(0, i2c->base + MPC_I2C_SR);
  19. } else {
  20. /* Interrupt mode */
  21. result = wait_event_interruptible_timeout(i2c->queue,
  22. (i2c->interrupt & CSR_MIF), timeout * HZ);
  23. if (unlikely(result < 0)) {
  24. pr_debug("I2C: wait interrupted\n");
  25. writeccr(i2c, 0);
  26. } else if (unlikely(!(i2c->interrupt & CSR_MIF))) {
  27. pr_debug("I2C: wait timeout\n");
  28. writeccr(i2c, 0);
  29. result = -ETIMEDOUT;
  30. }
  31. x = i2c->interrupt;
  32. i2c->interrupt = 0;
  33. }
  34. if (result < 0)
  35. return result;
  36. if (!(x & CSR_MCF)) {
  37. pr_debug("I2C: unfinished\n");
  38. return -EIO;
  39. }
  40. if (x & CSR_MAL) {    //仲裁失败
  41. pr_debug("I2C: MAL\n");
  42. return -EIO;
  43. }
  44. if (writing && (x & CSR_RXAK)) {//写后没收到ACK
  45. pr_debug("I2C: No RXAK\n");
  46. /* generate stop */
  47. writeccr(i2c, CCR_MEN);
  48. return -EIO;
  49. }
  50. return 0;
  51. }
  1. static int mpc_read(struct mpc_i2c *i2c, int target,
  2. u8 * data, int length, int restart)
  3. {
  4. unsigned timeout = i2c->adap.timeout;
  5. int i;
  6. u32 flags = restart ? CCR_RSTA : 0;
  7. /* Start with MEN */    //以防万一,保证I2C模块使能
  8. if (!restart)
  9. writeccr(i2c, CCR_MEN);
  10. /* Switch to read - restart */
  11. //注意这里,再次把CCR_MSTA置1,再触发 START
  12. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
  13. /* Write target address byte - this time with the read flag set */
  14. //CPU发送slave I2C addr和读操作1
  15. writeb((target << 1) | 1, i2c->base + MPC_I2C_DR);

//等待Slave发ACK

  1. if (i2c_wait(i2c, timeout, 1) < 0)
  2. return -1;
  3. if (length) {
  4. if (length == 1)
  5. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_TXAK);
  6. else //为什么不置 TXAK
  7. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA);
  8. /* Dummy read */
  9. readb(i2c->base + MPC_I2C_DR);
  10. }
  11. for (i = 0; i < length; i++) {
  12. if (i2c_wait(i2c, timeout, 0) < 0)
  13. return -1;
  14. /* Generate txack on next to last byte */
  15. //注意这里TXAK置1,表示CPU每收到1byte数据后,会发送ACK
  16. if (i == length - 2)
  17. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_TXAK);
  18. /* Generate stop on last byte */
  19. //注意这里CCR_MSTA [1->0] CPU会触发STOP
  20. if (i == length - 1)
  21. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_TXAK);
  22. data[i] = readb(i2c->base + MPC_I2C_DR);
  23. }
  24. return length;
  25. }

文章来源:http://dpinglee.blog.163.com/blog/static/14409775320112239374615/

 

1.I2C协议
   2条双向串行线,一条数据线SDA,一条时钟线SCL。
   SDA传输数据是大端传输,每次传输8bit,即一字节。
   支持多主控(multimastering),任何时间点只能有一个主控。
   总线上每个设备都有自己的一个addr,共7个bit,广播地址全0.
   系统中可能有多个同种芯片,为此addr分为固定部分和可编程部份,细节视芯片而定,看datasheet。

1.1 I2C位传输
   数据传输:SCL为高电平时,SDA线若保持稳定,那么SDA上是在传输数据bit;
   若SDA发生跳变,则用来表示一个会话的开始或结束(后面讲)
   数据改变:SCL为低电平时,SDA线才能改变传输的bit

1.2 I2C开始和结束信号
   开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。
   结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。

1.3 I2C应答信号

Master每发送完8bit数据后等待Slave的ACK。
   即在第9个clock,若从IC发ACK,SDA会被拉低。
   若没有ACK,SDA会被置高,这会引起Master发生RESTART或STOP流程,如下所示:

1.4 I2C写流程
写寄存器的标准流程为:
1.    Master发起START
2.    Master发送I2C addr(7bit)和w操作0(1bit),等待ACK
3.    Slave发送ACK
4.    Master发送reg addr(8bit),等待ACK
5.    Slave发送ACK
6.    Master发送data(8bit),即要写入寄存器中的数据,等待ACK
7.    Slave发送ACK
8.    第6步和第7步可以重复多次,即顺序写多个寄存器
9.    Master发起STOP

写一个寄存器

写多个寄存器

1.5 I2C读流程

读寄存器的标准流程为:
1.    Master发送I2C addr(7bit)和w操作1(1bit),等待ACK
2.    Slave发送ACK
3.    Master发送reg addr(8bit),等待ACK
4.    Slave发送ACK
5.    Master发起START
6.    Master发送I2C addr(7bit)和r操作1(1bit),等待ACK
7.    Slave发送ACK
8.    Slave发送data(8bit),即寄存器里的值
9.    Master发送ACK
10.    第8步和第9步可以重复多次,即顺序读多个寄存器

读一个寄存器

读多个寄存器

2. PowerPC的I2C实现

Mpc8560的CCSR中控制I2C的寄存器共有6个。

2.1 I2CADR 地址寄存器

CPU也可以是I2C的Slave,CPU的I2C地址有 I2CADR指定

2.2 I2CFDR 频率设置寄存器

The serial bit clock frequency of SCL is equal to the CCB clock divided by the divider.
用来设置I2C总线频率

2.3 I2CCR 控制寄存器

MEN: Module Enable.    置1时,I2C模块使能
MIEN:Module Interrupt Enable. 置1时,I2C中断使能。
MSTA:Master/slave mode. 1 Master mode,0 Slave mode.
        当1->0时,CPU发起STOP信号
        当0->1时,CPU发起START信号
MTX:Transmit/receive mode select.0 Receive mode,1 Transmit mode
TXAK:Transfer acknowledge. 置1时,CPU在9th clock发送ACK拉低SDA
RSTA:Repeat START. 置1时,CPU发送REPEAT START
BCST:置1,CPU接收广播信息(信息的slave addr为7个0)

2.4 I2CSR 状态寄存器

MCF:0  Byte transfer is in process
     1  Byte transfer is completed

MAAS:当CPU作为Slave时,若I2CDR与会话中Slaveaddr匹配,此bit被置1

MBB:0 I2C bus idle  
     1 I2C bus busy

MAL:若置1,表示仲裁失败
BCSTM:若置1,表示接收到广播信息

SRW:When MAAS is set, SRW indicates the value of the R/W command bit of the calling address, which is sent from the master.
   0 Slave receive, master writing to slave
   1 Slave transmit, master reading from slave

MIF:Module interrupt. The MIF bit is set when an interrupt is pending, causing a processor interrupt request(provided I2CCR[MIEN] is set)

RXAK:若置1,表示收到了ACK

2.5 I2CDR 数据寄存器

这个寄存器储存CPU将要传输的数据。

3. PPC-Linux中I2C的实现
 
  内核代码中,通过I2C总线存取寄存器的函数都在文件drivers/i2c/busses/i2c-mpc.c中
  最重要的函数是mpc_xfer.

  1. static int mpc_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, intnum)
  2. {
  3. struct i2c_msg *pmsg;
  4. int i;
  5. int ret = 0;
  6. unsigned long orig_jiffies = jiffies;
  7. struct mpc_i2c *i2c = i2c_get_adapdata(adap);
  8. mpc_i2c_start(i2c);    // 设置I2CCR[MEN], 使能I2C module
  9. /* Allow bus up to 1s to become not busy */
  10. //一直读I2CSR[MBB],等待I2C总线空闲下来
  11. while (readb(i2c->base + MPC_I2C_SR) & CSR_MBB) {
  12. if (signal_pending(current)) {
  13. pr_debug("I2C: Interrupted\n");
  14. writeccr(i2c, 0);
  15. return -EINTR;
  16. }
  17. if (time_after(jiffies, orig_jiffies + HZ)) {
  18. pr_debug("I2C: timeout\n");
  19. if (readb(i2c->base + MPC_I2C_SR) ==
  20. (CSR_MCF | CSR_MBB | CSR_RXAK))
  21. mpc_i2c_fixup(i2c);
  22. return -EIO;
  23. }
  24. schedule();
  25. }
  26. for (i = 0; ret >= 0 && i < num; i++) {
  27. pmsg = &msgs[i];
  28. pr_debug("Doing %s %d bytes to 0x%02x - %d of %d messages\n",
  29. pmsg->flags & I2C_M_RD ? "read" : "write",
  30. pmsg->len, pmsg->addr, i + 1, num);
  31. //根据消息里的flag进行读操作或写操作
  32. if (pmsg->flags & I2C_M_RD)
  33. ret = mpc_read(i2c, pmsg->addr, pmsg->buf, pmsg->len, i);
  34. else
  35. ret = mpc_write(i2c, pmsg->addr, pmsg->buf, pmsg->len, i);
  36. }
  37. mpc_i2c_stop(i2c);    //保证为I2CCSR[MSTA]为0,保证能触发STOP
  38. return (ret < 0) ? ret : num;
  39. }
  1. static int mpc_write(struct mpc_i2c *i2c, int target,
  2. const u8 * data, int length, int restart)
  3. {
  4. int i;
  5. unsigned timeout = i2c->adap.timeout;
  6. u32 flags = restart ? CCR_RSTA : 0;
  7. /* Start with MEN */    //以防万一,保证I2C模块使能起来
  8. if (!restart)
  9. writeccr(i2c, CCR_MEN);
  10. /* Start as master */       //写了I2CCR[CCR_MSTA],触发CPU发起START信号
  11. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
  12. /* Write target byte */     //CPU发送一个字节,slave I2C addr和0 (写操作bit)
  13. writeb((target << 1), i2c->base + MPC_I2C_DR);
  14. if (i2c_wait(i2c, timeout, 1) < 0)    //等待slave 发ACK
  15. return -1;
  16. for (i = 0; i < length; i++) {
  17. /* Write data byte */
  18. writeb(data[i], i2c->base + MPC_I2C_DR); //CPU接着发数据,包括reg addr和data
  19. if (i2c_wait(i2c, timeout, 1) < 0)       //等待slave 发ACK
  20. return -1;
  21. }
  22. return 0;
  23. }
  1. static int i2c_wait(struct mpc_i2c *i2c, unsigned timeout, int writing)
  2. {
  3. unsigned long orig_jiffies = jiffies;
  4. u32 x;
  5. int result = 0;
  6. if (i2c->irq == 0)
  7. {    //循环读I2CSR,直到I2CSR[MIF]置1
  8. while (!(readb(i2c->base + MPC_I2C_SR) & CSR_MIF)) {
  9. schedule();
  10. if (time_after(jiffies, orig_jiffies + timeout)) {
  11. pr_debug("I2C: timeout\n");
  12. writeccr(i2c, 0);
  13. result = -EIO;
  14. break;
  15. }
  16. }
  17. x = readb(i2c->base + MPC_I2C_SR);
  18. writeb(0, i2c->base + MPC_I2C_SR);
  19. } else {
  20. /* Interrupt mode */
  21. result = wait_event_interruptible_timeout(i2c->queue,
  22. (i2c->interrupt & CSR_MIF), timeout * HZ);
  23. if (unlikely(result < 0)) {
  24. pr_debug("I2C: wait interrupted\n");
  25. writeccr(i2c, 0);
  26. } else if (unlikely(!(i2c->interrupt & CSR_MIF))) {
  27. pr_debug("I2C: wait timeout\n");
  28. writeccr(i2c, 0);
  29. result = -ETIMEDOUT;
  30. }
  31. x = i2c->interrupt;
  32. i2c->interrupt = 0;
  33. }
  34. if (result < 0)
  35. return result;
  36. if (!(x & CSR_MCF)) {
  37. pr_debug("I2C: unfinished\n");
  38. return -EIO;
  39. }
  40. if (x & CSR_MAL) {    //仲裁失败
  41. pr_debug("I2C: MAL\n");
  42. return -EIO;
  43. }
  44. if (writing && (x & CSR_RXAK)) {//写后没收到ACK
  45. pr_debug("I2C: No RXAK\n");
  46. /* generate stop */
  47. writeccr(i2c, CCR_MEN);
  48. return -EIO;
  49. }
  50. return 0;
  51. }
  1. static int mpc_read(struct mpc_i2c *i2c, int target,
  2. u8 * data, int length, int restart)
  3. {
  4. unsigned timeout = i2c->adap.timeout;
  5. int i;
  6. u32 flags = restart ? CCR_RSTA : 0;
  7. /* Start with MEN */    //以防万一,保证I2C模块使能
  8. if (!restart)
  9. writeccr(i2c, CCR_MEN);
  10. /* Switch to read - restart */
  11. //注意这里,再次把CCR_MSTA置1,再触发 START
  12. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
  13. /* Write target address byte - this time with the read flag set */
  14. //CPU发送slave I2C addr和读操作1
  15. writeb((target << 1) | 1, i2c->base + MPC_I2C_DR);

//等待Slave发ACK

  1. if (i2c_wait(i2c, timeout, 1) < 0)
  2. return -1;
  3. if (length) {
  4. if (length == 1)
  5. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_TXAK);
  6. else //为什么不置 TXAK
  7. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA);
  8. /* Dummy read */
  9. readb(i2c->base + MPC_I2C_DR);
  10. }
  11. for (i = 0; i < length; i++) {
  12. if (i2c_wait(i2c, timeout, 0) < 0)
  13. return -1;
  14. /* Generate txack on next to last byte */
  15. //注意这里TXAK置1,表示CPU每收到1byte数据后,会发送ACK
  16. if (i == length - 2)
  17. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_TXAK);
  18. /* Generate stop on last byte */
  19. //注意这里CCR_MSTA [1->0] CPU会触发STOP
  20. if (i == length - 1)
  21. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_TXAK);
  22. data[i] = readb(i2c->base + MPC_I2C_DR);
  23. }
  24. return length;
  25. }

I2C总线协议的更多相关文章

  1. [I2C]I2C总线协议图解

    转自:http://blog.csdn.net/w89436838/article/details/38660631 1  I2C总线物理拓扑结构      I2C 总线在物理连接上非常简单,分别由S ...

  2. I2C总线协议的简要说明

    为了快速的了解I2C总线协议,此处采用另类的方式进行说明. 倘若你和另外一个人只能通过一个开关加灯泡的装置在不同的两个房间进行交流,以下是很简单能说明的一个模型: 你的房间有一个开关,另外一间房间有一 ...

  3. I2C总线协议的总结介绍

    在看天翔哥的视频之后,他强调要把I2C协议好好研究一下,那么就对一些基本的通信手段是十分有帮助的..那么就来了解一下I2C总线协议的一些知识吧. I2C(Inter-Integrated Circui ...

  4. I2C总线协议的软件模拟实现方法

    I2C总线协议的软件模拟实现方法 在上一篇博客中已经讲过I2C总线通信协议,本文讲述I2C总线协议的软件模拟实现方法. 1. 简述 所谓的I2C总线协议的软件模拟实现方法,就是用软件控制GPIO的输入 ...

  5. I2C总线协议图解(转载)

    转自:http://blog.csdn.net/w89436838/article/details/38660631 另外,https://blog.csdn.net/qq_38410730/arti ...

  6. I2C 总线协议

    1.I2C协议     2条双向串行线,一条数据线SDA,一条时钟线SCL.   SDA传输数据是大端传输,每次传输8bit,即一字节.   支持多主控(multimastering),任何时间点只能 ...

  7. 【转】I2C总线协议

    I2C总线(Inter Integrated-Circuit)是由PHILIPS公司在上世纪80年代发明的一种电路板级串行总线标准,通过两根信号线——时钟线SCL和数据线SDA——即可完成主从机的单工 ...

  8. I2C总线协议学习笔记 (转载)

    1.I2C协议   2条双向串行线,一条数据线SDA,一条时钟线SCL.   SDA传输数据是大端传输,每次传输8bit,即一字节.   支持多主控(multimastering),任何时间点只能有一 ...

  9. I2C总线协议详解

    I2C总线定义     I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备.I2C总线产生于在80年代,最初为音 ...

随机推荐

  1. Appium+python自动化16-appium1.6在mac上环境搭建启动ios模拟器上Safari浏览器

    前言 在mac上搭建appium踩了不少坑,先是版本低了,启动后无限重启模拟器.后来全部升级最新版本,就稳稳的了. 环境准备: 1.OS版本号10.12 2.xcode版本号8.3.2 3.appiu ...

  2. 第一章 Actionscript学习基本知识笔记及flashdevelop软件的安装问题

    OOP:封装.继承.多态. Pubilc :完全公开. Internal:包内类成员可以互相访问. Private:仅当前类可以访问. Protected:当前类和当前类的子类可以访问. 被关键词fi ...

  3. jQuery -&gt; filter使用方法

    利用filter函数能够从wrapper set中过滤符合条件的DOM元素. 假设我们有一个内容例如以下的html文件,要获取类为external的<a>元素,使用filter能够非常ea ...

  4. 用500行Julia代码开始深度学习之旅 Beginning deep learning with 500 lines of Julia

    Click here for a newer version (Knet7) of this tutorial. The code used in this version (KUnet) has b ...

  5. go语言基础之包和自定义包与main包

    1.包 所有 Go 语言的程序都会组织成若干组文件,每组文件被称为一个包.这样每个包的代码都可以作为很小的复用单元,被其他项目引用. 一个包的源代码保存在一个或多个以.go为文件后缀名的源文件中,通常 ...

  6. go语言基础之闭包的特点

    所谓闭包就是一个函数“捕获”了和它在同一作用域的其它常量和变量.这就意味着当闭包被调用的时候,不管在程序什么地方调用,闭包能够使用这些常量或者变量.它不关心这些捕获了的变量和常量是否已经超出了作用域, ...

  7. TypeEvaluator 估值器 抛物线

    TypeEvaluator简介 Android提供了以下几个简单的Evalutor实现类: IntEvaluator:属性的值类型为int FloatEvaluator:属性的值类型为float Ar ...

  8. 通过Spring配置文件中bean中的property赋值

    基本数据类型赋值-通过spring配置文件中bean中的property 扩展-以此方式可以通过配置为连接数据的属性赋值 1.如果是基本数据类型,可以通过setter方法为对象中的属性设置初始值,应用 ...

  9. [AngularJS] $scope.$watch

    /** * Created by Answer1215 on 11/13/2014. */ function MainCtrl($scope){ function isLongEnough (pwd) ...

  10. 性能测试工具 nGrinder 项目剖析及二次开发

    转:https://testerhome.com/topics/4225 0.背景 组内需要一款轻量级的性能测试工具,之前考虑过LR(太笨重,单实例,当然它的地位是不容置疑的),阿里云的PTS(htt ...