机器学习算法特点:迭代运算

损失函数最小化训练过程中,在巨大参数空间中迭代寻找最优解

比如:主题模型、回归、矩阵分解、SVM、深度学习

分布式机器学习的挑战:

- 网络通信效率

- 不同节点执行速度不同:加快慢任务

- 容错性

机器学习简介:

数据并行vs模型并行:

数据并行

模型并行

分布式机器学习范型:

其他情形

MPI:容错性差、集群规模小、扩展性低

GPU:目前处理规模中等(6-10GB)

1. 同步范型(严格情形每轮迭代进行数据同步)

快等慢,计算资源浪费;网络通信多

eg:MapReduce迭代计算、BSP模型属于严格同步范型

2. 异步范型(任意时刻读取更新全局参数)

若部分任务迭代严重落后会拉低效果

3. 部分同步范型(主要研究方向)

eg:SSP模型

MapReduce迭代计算模型

BSP(Bulk Synchronous Parallel)计算模型

“桥接模型”:介于纯硬件、纯编程模式之间的模型

许多相关工作已验证BSP模型的健壮性、性能可预测性和可扩展性

优点:

缺点:

资源利用率低、网络通信多、计算效率低

图计算框架也用BSP:比如Pregel、Giraph

SSP(Stale Synchronous Parallel)计算模型

阈值s=0时,SSP退化为BSP同步模型;s=+inf时,SSP演化为完全异步模型

分布式机器学习架构:

MapReduce系列架构:

Cloudera Oryx、Apache Mahout,两者类似。

Spark及MLBase:

Spark

2. MLBase

参数服务器(Parameter Server):

比如:Google能处理百亿参数的深度机器学习框架DistBelief

1. 架构

2. 一致性模型

需要设计新型的参数副本一致性均衡正确性和并发度。往往通过受限的异步并行方式(类似于部分同步并行)

1)时钟界异步并行(Clock-bounded Asynchronous Parallel,CAP)

2)值界异步并行(Value-bounded Asynchronous Parallel,VAP)

不考虑时钟值而是参数的更新积累数值。

也可以集成CAP和VAP。有理论可以证明:对于随机梯度下降等常见机器学习算法,VAP可以保证算法收敛性。

3. SSPTable

《大数据日知录》读书笔记-ch15机器学习:范型与架构的更多相关文章

  1. 一. 数据分片和路由 <<大数据日知录>> 读书笔记

    本章主要讲解大数据下如何做数据分片,所谓分片,即将大量数据分散在不同的节点,同时每个存储节点还要做副本备份. 而一般的抽象分片方法是, 先将数据映射到一个分片空间,这是多对一的关系,即一个数据分片区间 ...

  2. 二. 大数据常用的算法和数据结构 <<大数据日知录>> 读书笔记

    基本上是hash实用的各种举例 布隆过滤器 Bloom Filter 常用来检测某个原色是否是巨量数据集合中的成员,优势是节省空间,不会有漏判(已经存在的数据肯定能够查找到),缺点是有误判(不存在的数 ...

  3. 读&lt;大数据日知录:架构与算法&gt;有感

    前一段时间, 一个老师建议我能够学学 '大数据' 和 '机器学习', 他说这必定是今后的热点, 学会了, 你就是香饽饽.在此之前, 我对大数据, 机器学习并没有非常深的认识, 总觉得它们是那么的缥缈, ...

  4. 《大数据日知录》读书笔记-ch1数据分片与路由

    目前主流大数据存储使用横向扩展(scale out)而非传统数据库纵向扩展(scale up)的方式.因此涉及数据分片.数据路由(routing).数据一致性问题 二级映射关系:key-partiti ...

  5. 《大数据日知录》读书笔记-ch2数据复制与一致性

    CAP理论:Consistency,Availability,Partition tolerance 对于一个分布式数据系统,CAP三要素不可兼得,至多实现其二.要么AP,要么CP,不存在CAP.分布 ...

  6. 《大数据日知录》读书笔记-ch16机器学习:分布式算法

    计算广告:逻辑回归 千次展示收益eCPM(Effective Cost Per Mille) eCPM= CTR * BidPrice 优化算法 训练数据使用:在线学习(online learning ...

  7. 《大数据日知录》读书笔记-ch11大规模批处理系统

    MapReduce: 计算模型: 实例1:单词统计 实例2:链接反转 实例3:页面点击统计 系统架构: 在Map阶段还可以执行可选的Combiner操作,类似于Reduce,但是在Mapper sid ...

  8. 《大数据日知录》读书笔记-ch3大数据常用的算法与数据结构

    布隆过滤器(bloom filter,BF): 二进制向量数据结构,时空效率很好,尤其是空间效率极高.作用:检测某个元素在某个巨量集合中存在. 构造: 查询: 不会发生漏判(false negativ ...

  9. [转载] leveldb日知录

    原文: http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html 对leveldb非常好的一篇学习总结文章 郑重声明:本篇博客是自己学 ...

随机推荐

  1. MySQL闪退

    把配置文档的如图位置打开

  2. C++ 内敛函数

    在主调函数调用函数时,先将现场压入栈以保存现场-转去执行被掉函数-返回主调函数.现场出栈以恢复现场-继续往下执行. 为了减少函数调用的成本,特别是对于小型函数,C++提供了内敛函数(inline).C ...

  3. opencv——设置ROI区域

    #include "stdafx.h" #include<opencv2\opencv.hpp> #include<opencv\cv.h> #includ ...

  4. 用 Inkscape 做 SVG 给 TPath

    FireMonkey 里的 TPathData 支持 SVG 的基本绘图指令,因此可以运用 Inkscape 软件,提取 SVG 的绘图内容,请见图片说明: INKSCAPE https://inks ...

  5. Linq限定操作之All,Any,Contains源码分析

    Linq限定操作之All,Any,Contains源码分析 linq的限定操作 常见的限定操作: All,Any,Contains 一:All 1. 解释: 确定序列中的所有元素是否满足条件. 从字面 ...

  6. Android-帧布局(FrameLayout)

    帧布局的特点是,一层一层的覆盖在上面 帧布局,使用比较多的属性是: android:layout_gravity="bottom" 也支持这些属性的设置: <!-- andr ...

  7. Linux Guard Service - 守护进程分裂

    分裂守护进程 由于fork()后第一行仍然在循环中,使用fork()返回值鉴别当前进程的性质 int i = 0; for (i = 0; i < 10; i++) { // sleep(1); ...

  8. Android ActionBar使用方法

    对于这ActionBar我想很多人都想了解一下到底是怎么一个使用方法,以及它都存在哪些可操作的和使用的地方.如下图所示:<ignore_js_op> 这便是ActionBar的基本内容.获 ...

  9. sql添加列,删除列,修改列

    有时候,当数据库里面有数据了,再到设计器里面删除列,就删不掉.只能用代码删除. alter table tableName drop column columnName 添加列 ) 修改列 ) --修 ...

  10. .Net Core使用OpenXML导出,导入Excel

    导出Excel是程序很常用到的功能,.Net Core可以借助Open-XML-SDK来导出Excel. Open-XML-SDK open-xml-sdk是是微软开源的项目.Open XML SDK ...