2018-01-12 22:50:06

一、优化问题

优化问题用数学的角度来分析就是去求一个函数或者说方程的极大值或者极小值,通常这种优化问题是有约束条件的,所以也被称为约束优化问题

约束优化问题(亦译为受约束的最优化问题)是一类数学最优化问题,它由目标函数以及与目标函数中的变量相关的约束条件两部分组成,优化过程则为在约束条件下最优化(最大化或最小化)目标函数。

经典的优化问题:

  • 最短路问题
  • 旅行商问题(TSP)
  • 装箱问题
  • 调度问题
  • 背包问题

了解并熟练掌握这些经典的优化问题会对以后遇到的新的优化问题有很大的帮助,事实上,很多时候看似是新的问题其实是可以规约(Problem Reduction)到这些经典问题上的,而这些经典的优化问题已经有了非常多的极其完善的解法。

二、动态规划

动态规划(英语:Dynamic programming,简称DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。

动态规划在求解优化问题上非常常用,是一个解决优化问题的利器,其所耗时间往往远少于朴素解法。

动态规划问题的适用条件:

  1. 最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索;或者说一个问题的最优解可以由其子问题的最优解构建得到。
  2. 无后效性。即子问题的解一旦确定,就不再改变,不受在这之后、包含它的更大的问题的求解决策影响。
  3. 重叠子问题性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。

使用斐波那契数列(Fibonacci polynomial)来简单解释一下重叠子问题:

1)自顶向下使用递归实现Fib

def fib(n):
if n <= 1:
return n
else:
return fib(n-1) + fib(n-2)

显然,在这种情况下会造成大量的重复计算,这就是重叠子问题。

一个非常正常的想法就是使用memoization,被称为默记法,将第一次计算得到的结果保存下来,之后再需要的时候,就不用重复计算,只需要查表就可以了。

因此这种自顶向下的方法也被称作Table Lookup,查表法。

def fib1(n):
if not n in memo:
memo[n] = fib1(n-1) + fib1(n-2)
return memo[n] memo = {0:0, 1:1}

2)自低向上实现Fib

一般来说,默认动态规划就是使用自低向上来进行迭代计算,这样做的好处是容易理解,且运行效率高。

    int fib2(int n) {
int d[] = new int[n+1];
d[0] = 0;
d[1] = 1;
for (int i = 2; i <= n; i++) {
d[i] = d[i - 1] + d[i - 2];
}
return d[n];
}

一些理解:

1、动态规划算法本质上也是一种用空间换时间的算法

2、不要被指数复杂度的问题吓到,往往我们可以找到更快的解法

3、动态规划有非常广泛的应用场景,一般来说,遇到递归问题,都可以考虑一下是否可以使用动态规划来提高运行效率

4、要学会规约,将其他的一些问题规约到经典的优化问题上简化解决步骤

5、Dynamic Problem由Bellman发明,不用纠结于为什么要使用Dynamic这个词来命名,因为本身就只是个名称。动态规划就是使用保存递归时的结果,因而不会在解决同样的问题时花费时间,来对原问题进行优化

最优化问题 Optimization Problems & 动态规划 Dynamic Programming的更多相关文章

  1. 动态规划Dynamic Programming

    动态规划Dynamic Programming code教你做人:DP其实不算是一种算法,而是一种思想/思路,分阶段决策的思路 理解动态规划: 递归与动态规划的联系与区别 -> 记忆化搜索 -& ...

  2. 6专题总结-动态规划dynamic programming

    专题6--动态规划 1.动态规划基础知识 什么情况下可能是动态规划?满足下面三个条件之一:1. Maximum/Minimum -- 最大最小,最长,最短:写程序一般有max/min.2. Yes/N ...

  3. 动态规划(Dynamic Programming)算法与LC实例的理解

    动态规划(Dynamic Programming)算法与LC实例的理解 希望通过写下来自己学习历程的方式帮助自己加深对知识的理解,也帮助其他人更好地学习,少走弯路.也欢迎大家来给我的Github的Le ...

  4. [算法]动态规划(Dynamic programming)

    转载请注明原创:http://www.cnblogs.com/StartoverX/p/4603173.html Dynamic Programming的Programming指的不是程序而是一种表格 ...

  5. 动态规划 Dynamic Programming 学习笔记

    文章以 CC-BY-SA 方式共享,此说明高于本站内其他说明. 本文尚未完工,但内容足够丰富,故提前发布. 内容包含大量 \(\LaTeX\) 公式,渲染可能需要一些时间,请耐心等待渲染(约 5s). ...

  6. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  7. [笔记]动态规划(dynamic programming)

    动态规划与分治方法都是通过组合子问题的解来求解原问题,区别在于:分治方法将问题划分为互不相交的子问题,递归求解子问题,再将它们的解组合起来,求出原问题的解.分治算法可能反复的求解某些公共子问题,从而使 ...

  8. 动态规划系列(零)—— 动态规划(Dynamic Programming)总结

    动态规划三要素:重叠⼦问题.最优⼦结构.状态转移⽅程. 动态规划的三个需要明确的点就是「状态」「选择」和「base case」,对应着回溯算法中走过的「路径」,当前的「选择列表」和「结束条件」. 某种 ...

  9. Python算法之动态规划(Dynamic Programming)解析:二维矩阵中的醉汉(魔改版leetcode出界的路径数)

    原文转载自「刘悦的技术博客」https://v3u.cn/a_id_168 现在很多互联网企业学聪明了,知道应聘者有目的性的刷Leetcode原题,用来应付算法题面试,所以开始对这些题进行" ...

随机推荐

  1. 脚本其实很简单-windows配置核查程序(2)

    bat脚本是什么? 首先讲讲什么是命令行,在windows操作系统中,点击左下角的win图标,直接输入cmd搜索,左键点击进入命令行模式(或按键盘上的win键+r直接调出来命令行窗口). 在windo ...

  2. Apache配置虚拟主机的三种方法(基于IP、端口、域名)

    1 Apache虚拟主机的实现方式有3种. 基于IP的虚拟主机 基于端口的虚拟主机 基于域名的虚拟主机 2.1 启用虚拟主机的准备工作 2.1.1安装httpd [root@mail httpd]# ...

  3. SDUT1607:Number Sequence(矩阵快速幂)

    题目:http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1607 题目描述 A number seq ...

  4. MongoDB简单CRUD场景

    MongoDB简单CRUD命令操作 (1)新建数据库:use 数据库名 (2)显示所有数据库:show dbs; (3)新建集合(两种方式)  隐式创建:在创建集合的同时往集合里面添加数据---db. ...

  5. 聊一聊 Django 中间件

    Django默认的Middleware有七个: MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.cont ...

  6. http超文本传输协议,get与post区别

    一:什么是http? http:超文本传输协议(HTTP,HyperText Transfer Protocol),是一个客户端和服务器端传输的标准,是应用层通信协议.客户端是中端用户,服务器端是网站 ...

  7. SQL注入漏洞有哪些

    SQL注入攻击是当今最危险.最普遍的基于Web的攻击之一.所谓注入攻击,是攻击者把SQL命令插入到Web表单的输入域页面请求的查询字符串中,如果要对一个网站进行SQL注入攻击,首先需要找到存在SQL注 ...

  8. $ 一步一步学Matlab(3)——Matlab中的数据类型

    小学时候我们就知道,数学中有自然数.整数.分数.小数等等很多种类型的数.到了中学,我们又发现了其实还有无理数.复数这些有些特殊的数.到了大学学了高等数学之后,我们又知道了其实还存在着无穷大.无穷小这样 ...

  9. Ubuntu16.04系统中Nmon的安装

    Nmon的安装,亲民的安装方法: apt install nmon 不再需要源码编译安装和下载文件到指定目录,解压再运行了.

  10. Java Calendar类总结

    在实际项目当中,我们经常会涉及到对时间的处理,例如登陆网站,我们会看到网站首页显示XXX,欢迎您!今天是XXXX年....某些网站会记录下用户登陆的时间,比如银行的一些网站,对于这些经常需要处理的问题 ...